We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Mixed Moving Averages and Self-Similarity | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Mixed Moving Averages and Self-Similarity

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Stable Non-Gaussian Self-Similar Processes with Stationary Increments

Abstract

The focus of the chapter is on a large class of symmetric stable self-similar processes with stationary increments, known as self-similar mixed moving averages. Minimal representations of self-similar mixed moving averages are related to nonsingular flows. Based on the structure of the underlying flows, self-similar mixed moving averages are decomposed uniquely into four major classes that are associated with dissipative, fixed, cyclic and conservative nonperiodic flows. These classes are also derived based on nonminimal representations, without referring to the underlying flows. Finally, canonical representations of self-similar mixed moving averages are derived for the dissipative, fixed and cyclic classes, and an example of a conservative nonperiodic self-similar mixed moving average is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ​​The process is called “mixed” because of the presence of the X dimension which gives rise to a “mixture.”

  2. 2.

    ​​Indeed, under mild assumptions (e.g., Doob [11], Section 11, Chapter XI), such a process has a spectral domain representation \(\int _{\mathbb{R}}\widehat{f}_{t}(x)\widehat{B}(dx)\), where \(\widehat{f}_{t}(x) = (e^{itx} - 1)f(x)\) and \(\widehat{B}(dx)\) is a Gaussian Hermitian measure with the control measure dx. Then, under additional mild assumptions, the postulated representation \(\int _{\mathbb{R}}(G(t + u) - G(u))B(du)\) follows by setting G to be the inverse Fourier transform of the function f.

  3. 3.

    ​​Unique modulo μ means, for example, that if {ψ c } c > 0 and \(\{\widetilde{\psi }_{c}\}_{c>0}\) are two such flows, then for all c > 0, \(\psi _{c} =\widetilde{\psi } _{c}\) μ-a.e.

  4. 4.

    ​​To see this easily, express (3.33) as

    $$\displaystyle{G(x,u) = h_{c_{1}}(x)\ c_{1}^{\kappa }G(\varPhi _{c_{ 1}}^{1}(x),c_{ 1}^{-1}u +\varPhi _{ c_{ 1}}^{2}(x)) + c_{ 1}^{\kappa }\varPhi _{c_{ 1}}^{3}(x)}$$

    and iterate.

  5. 5.

    ​​Do not confuse this function F with the one defined in ( 3.50 ).

  6. 6.

    ​​In Pipiras and Taqqu [37], dissipative fractional stable motions (DFSMs) are called dilated fractional stable motions.

  7. 7.

    ​​Do not confuse the process X α with the set X.

  8. 8.

    ​In Pipiras and Taqqu [36] (see Definition 5.1), the fixed fractional stable motion was called mixed linear fractional stable motion because of Theorem 3.11 below.

  9. 9.

    ​​Cyclic fractional stable motion is abbreviated as cLFSM, since the abbreviation LFSM is commonly used for linear fractional stable motion.

  10. 10.

    ​​We use (2.101) and (2.102), but the h is replaced by lnc since we are considering here a multiplicative flow instead of an additive flow. Note also that β 2 = κ for the 2-semi-additive functional in Definition 3.2.

References

  1. J. Aaronson. An Introduction to Infinite Ergodic Theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.

    Google Scholar 

  2. J. Aaronson and M. Denker. Characteristic functions of random variables attracted to 1-stable laws. The Annals of Probability, 26(1):399–415, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Arveson. An Invitation to C -Algebras. Springer-Verlag, New York, 1976.

    Book  MATH  Google Scholar 

  4. S. Banach. Théorie des Opérations Linéaires. Warsaw, 1932.

    MATH  Google Scholar 

  5. N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  6. P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer Series in Statistics. Springer-Verlag, New York, second edition, 1991.

    Google Scholar 

  7. S. Coles. An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer-Verlag London Ltd., London, 2001.

    Book  MATH  Google Scholar 

  8. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai. Ergodic Theory. Springer-Verlag, 1982.

    Google Scholar 

  9. L. de Haan and A. Ferreira. Extreme Value Theory. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2006. An introduction.

    Google Scholar 

  10. L. de Haan and J. Pickands III. Stationary min-stable stochastic processes. Probability Theory and Related Fields, 72(4):477–492, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. L. Doob. Stochastic Processes. Wiley Classics Library. John Wiley & Sons Inc., New York, 1953. Reprint of the 1953 original, a Wiley-Interscience Publication.

    Google Scholar 

  12. H. Dym and H. P. McKean. Fourier Series and Integrals. Academic Press, New York, 1972.

    MATH  Google Scholar 

  13. P. Embrechts and M. Maejima. Selfsimilar Processes. Princeton Series in Applied Mathematics. Princeton University Press, 2002.

    MATH  Google Scholar 

  14. R. J. Fleming and J. E. Jamison. Isometries on Banach Spaces: Function Spaces, volume 129 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2003.

    Google Scholar 

  15. E. Glasner. Ergodic Theory via Joinings, volume 101 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  16. B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random variables. Addison-Wesley, Reading, MA, 1954.

    Google Scholar 

  17. K. Górska and K. A. Penson. Lévy stable two-sided distributions: Exact and explicit densities for asymmetric case. Physical Review E, 83:061125, 2011.

    Google Scholar 

  18. P. R. Halmos. Measure Theory. Van Nostrand, New York, 1950.

    Google Scholar 

  19. C. D. Hardin Jr. Isometries on subspaces of L p. Indiana University Mathematics Journal, 30:449–465, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. D. Hardin Jr. On the spectral representation of symmetric stable processes. Journal of Multivariate Analysis, 12:385–401, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  21. Z. Kabluchko. Spectral representations of sum- and max-stable processes. Extremes, 12(4):401–424, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Kanter. The L p norm of sums of translates of a function. Transactions of the American Mathematical Society, 79:35–47, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. S. Kechris. Classical Descriptive Set Theory. Springer-Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  24. S. Kolodyński and J. Rosiński. Group self-similar stable processes in d. Journal of Theoretical Probability, 16(4):855–876 (2004), 2003.

    Google Scholar 

  25. U. Krengel. Darstellungssätze für Strömungen und Halbströmungen II. Mathematische Annalen, 182:1–39, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  26. U. Krengel. Ergodic Theorems. Walter de Gruyter, Berlin, 1985.

    Book  MATH  Google Scholar 

  27. I. Kubo. Quasi-flows. Nagoya Mathematical Journal, 35:1–30, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Kubo. Quasi-flows II: Additive functionals and TQ-systems. Nagoya Mathematical Journal, 40:39–66, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Lamperti. On the isometries of certain function-spaces. Pacific Journal of Mathematics, 8:459–466, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Lindgren. Stationary Stochastic Processes. Chapman & Hall/CRC Texts in Statistical Science Series. CRC Press, Boca Raton, FL, 2013. Theory and applications.

    Google Scholar 

  31. G. W. Mackey. Borel structure in groups and their duals. Transactions of the American Mathematical Society, 85:134–165, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Forthcoming, 2017.

    Google Scholar 

  33. K. Petersen. Ergodic Theory. Cambridge University Press, Cambridge, 1983.

    Book  MATH  Google Scholar 

  34. V. Pipiras. Nonminimal sets, their projections and integral representations of stable processes. Stochastic Processes and their Applications, 117(9):1285–1302, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Pipiras and M. S. Taqqu. Decomposition of self-similar stable mixed moving averages. Probability Theory and Related Fields, 123(3):412–452, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Pipiras and M. S. Taqqu. The structure of self-similar stable mixed moving averages. The Annals of Probability, 30(2):898–932, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  37. V. Pipiras and M. S. Taqqu. Dilated fractional stable motions. Journal of Theoretical Probability, 17(1):51–84, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Pipiras and M. S. Taqqu. Stable stationary processes related to cyclic flows. The Annals of Probability, 32(3A):2222–2260, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Pipiras and M. S. Taqqu. Integral representations of periodic and cyclic fractional stable motions. Electronic Journal of Probability, 12:no. 7, 181–206, 2007.

    Google Scholar 

  40. V. Pipiras and M. S. Taqqu. Identification of periodic and cyclic fractional stable motions. Annales de l’Institut Henri Poincaré Probabilités et Statistiques, 44(4):612–637, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Pipiras and M. S. Taqqu. Semi-additive functionals and cocycles in the context of self-similarity. Discussiones Mathematicae. Probability and Statistics, 30(2):149–177, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  42. V. Pipiras and M. S. Taqqu. Long-Range Dependence and Self-Similarity. Cambridge University Press, 2017.

    Book  MATH  Google Scholar 

  43. S. T. Rachev and S. Mittnik. Stable Paretian Models in Finance. Wiley, New York, 2000.

    MATH  Google Scholar 

  44. J. Rosiński. On uniqueness of the spectral representation of stable processes. Journal of Theoretical Probability, 7(3):615–634, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Rosiński. Uniqueness of spectral representations of skewed stable processes and stationarity. In H. Kunita and H.-H. Kuo, editors, Stochastic Analysis On Infinite Dimensional Spaces., pages 264–273. Proceedings of the U.S.-Japan Bilateral Seminar, 1994.

    Google Scholar 

  46. J. Rosiński. On the structure of stationary stable processes. The Annals of Probability, 23:1163–1187, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Rosiński. Decomposition of stationary α-stable random fields. The Annals of Probability, 28(4):1797–1813, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Rosiński. Minimal integral representations of stable processes. Probability and Mathematical Statistics, 26(1):121–142, 2006.

    MathSciNet  MATH  Google Scholar 

  49. P. Roy and G. Samorodnitsky. Stationary symmetric α-stable discrete parameter random fields. Journal of Theoretical Probability, 21(1):212–233, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  50. H. L. Royden. Real Analysis. Macmillan, third edition, 1988.

    Google Scholar 

  51. W. Rudin. L p-isometries and equimeasurability. Indiana University Mathematics Journal, 25(3):215–228, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  52. G. Samorodnitsky. Extreme value theory, ergodic theory and the boundary between short memory and long memory for stationary stable processes. The Annals of Probability, 32(2):1438–1468, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  53. G. Samorodnitsky. Null flows, positive flows and the structure of stationary symmetric stable processes. The Annals of Probability, 33(5):1782–1803, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  54. G. Samorodnitsky. Stochastic Processes and Long Range Dependence. Springer Series in Operations Research and Financial Engineering, Springer, 2016.

    Book  MATH  Google Scholar 

  55. G. Samorodnitsky and M. S. Taqqu. 1∕α-self-similar processes with stationary increments.. Journal of Multivariate Analysis, 35:308–313, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Stochastic Modeling. Chapman & Hall, New York, 1994. Stochastic models with infinite variance.

    Google Scholar 

  57. K.-i. Sato. Lévy Processes and Infinitely Divisible Distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2013. Translated from the 1990 Japanese original, Revised edition of the 1999 English translation.

    Google Scholar 

  58. R. Sikorski. Boolean Algebras. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 25. Springer-Verlag New York Inc., New York, 1969.

    Google Scholar 

  59. S. M. Srivastava. A Course on Borel Sets. Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  60. D. Surgailis, J. Rosiński, V. Mandrekar, and S. Cambanis. Stable generalized moving averages. Probability Theory and Related Fields, 97:543–558, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  61. D. Surgailis, J. Rosiński, V. Mandrekar, and S. Cambanis. On the mixing structure of stationary increment and self-similar SαS processes. Preprint, 1998.

    Google Scholar 

  62. S. Takenaka. Integral-geometric construction of self-similar stable processes. Nagoya Mathematical Journal, 123:1–12, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  63. V. V. Uchaikin and V. M. Zolotarev. Chance and Stability. Modern Probability and Statistics. VSP, Utrecht, 1999. Stable distributions and their applications, With a foreword by V. Yu. Korolev and Zolotarev.

    Google Scholar 

  64. D. H. Wagner. Survey of measurable selection theorems. SIAM Journal of Control and Optimization, 15(5):859–903, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  65. P. Walters. An Introduction to Ergodic Theory. Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  66. Y. Wang and S. A. Stoev. On the association of sum- and max-stable processes. Statistics & Probability Letters, 80(5–6):480–488, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  67. Y. Wang and S. A. Stoev. On the structure and representations of max-stable processes. Advances in Applied Probability, 42(3):855–877, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  68. R. J. Zimmer. Ergodic Theory and Semisimple Groups. Birkhäuser, Boston, 1984.

    Book  MATH  Google Scholar 

  69. V. M. Zolotarev. One-dimensional Stable Distributions, volume 65 of “Translations of mathematical monographs”. American Mathematical Society, 1986. Translation from the original 1983 Russian edition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Pipiras, V., Taqqu, M.S. (2017). Mixed Moving Averages and Self-Similarity. In: Stable Non-Gaussian Self-Similar Processes with Stationary Increments. SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-62331-3_3

Download citation

Publish with us

Policies and ethics