Minimality, Rigidity, and Flows

  • Vladas Pipiras
  • Murad S. Taqqu
Part of the SpringerBriefs in Probability and Mathematical Statistics book series (SBPMS )


A symmetric stable random process has many integral representations. Among these, the so-called minimal representations play a fundamental role, as described in the chapter. Minimal representations are characterized by a rigidity property that allows relating stable processes with an invariance property to nonsingular flows and their functionals. Various types of nonsingular flows (dissipative, conservative, periodic, fixed and others) are also discussed. They underlie the decompositions of stable processes derived in the following chapter.


  1. [4]
    S. Banach. Théorie des Opérations Linéaires. Warsaw, 1932.zbMATHGoogle Scholar
  2. [5]
    N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1987.Google Scholar
  3. [6]
    P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer Series in Statistics. Springer-Verlag, New York, second edition, 1991.CrossRefzbMATHGoogle Scholar
  4. [12]
    H. Dym and H. P. McKean. Fourier Series and Integrals. Academic Press, New York, 1972.zbMATHGoogle Scholar
  5. [18]
    P. R. Halmos. Measure Theory. Van Nostrand, New York, 1950.CrossRefzbMATHGoogle Scholar
  6. [19]
    C. D. Hardin Jr. Isometries on subspaces of L p. Indiana University Mathematics Journal, 30:449–465, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [20]
    C. D. Hardin Jr. On the spectral representation of symmetric stable processes. Journal of Multivariate Analysis, 12:385–401, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [22]
    M. Kanter. The L p norm of sums of translates of a function. Transactions of the American Mathematical Society, 79:35–47, 1973.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [25]
    U. Krengel. Darstellungssätze für Strömungen und Halbströmungen II. Mathematische Annalen, 182:1–39, 1969.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [26]
    U. Krengel. Ergodic Theorems. Walter de Gruyter, Berlin, 1985.CrossRefzbMATHGoogle Scholar
  11. [27]
    I. Kubo. Quasi-flows. Nagoya Mathematical Journal, 35:1–30, 1969.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [28]
    I. Kubo. Quasi-flows II: Additive functionals and TQ-systems. Nagoya Mathematical Journal, 40:39–66, 1970.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [29]
    J. Lamperti. On the isometries of certain function-spaces. Pacific Journal of Mathematics, 8:459–466, 1958.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [35]
    V. Pipiras and M. S. Taqqu. Decomposition of self-similar stable mixed moving averages. Probability Theory and Related Fields, 123(3):412–452, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [38]
    V. Pipiras and M. S. Taqqu. Stable stationary processes related to cyclic flows. The Annals of Probability, 32(3A):2222–2260, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [41]
    V. Pipiras and M. S. Taqqu. Semi-additive functionals and cocycles in the context of self-similarity. Discussiones Mathematicae. Probability and Statistics, 30(2):149–177, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [42]
    V. Pipiras and M. S. Taqqu. Long-Range Dependence and Self-Similarity. Cambridge University Press, 2017.Google Scholar
  18. [44]
    J. Rosiński. On uniqueness of the spectral representation of stable processes. Journal of Theoretical Probability, 7(3):615–634, 1994.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [46]
    J. Rosiński. On the structure of stationary stable processes. The Annals of Probability, 23:1163–1187, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [48]
    J. Rosiński. Minimal integral representations of stable processes. Probability and Mathematical Statistics, 26(1):121–142, 2006.MathSciNetzbMATHGoogle Scholar
  21. [50]
    H. L. Royden. Real Analysis. Macmillan, third edition, 1988.Google Scholar
  22. [51]
    W. Rudin. L p-isometries and equimeasurability. Indiana University Mathematics Journal, 25(3):215–228, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [56]
    G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Stochastic Modeling. Chapman & Hall, New York, 1994. Stochastic models with infinite variance.Google Scholar
  24. [58]
    R. Sikorski. Boolean Algebras. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 25. Springer-Verlag New York Inc., New York, 1969.Google Scholar
  25. [68]
    R. J. Zimmer. Ergodic Theory and Semisimple Groups. Birkhäuser, Boston, 1984.CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Vladas Pipiras
    • 1
  • Murad S. Taqqu
    • 2
  1. 1.Statistics and Operations ResearchUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Mathematics and StatisticsBoston UniversityBostonUSA

Personalised recommendations