Advertisement

Preliminaries

  • Vladas Pipiras
  • Murad S. Taqqu
Chapter
Part of the SpringerBriefs in Probability and Mathematical Statistics book series (SBPMS )

Abstract

Symmetric stable random variables and stochastic processes are reviewed in the chapter, including their definitions and basic properties. Integral representations of symmetric stable random processes are also discussed, laying foundations for the developments in the ensuing chapters.

References

  1. [2]
    J. Aaronson and M. Denker. Characteristic functions of random variables attracted to 1-stable laws. The Annals of Probability, 26(1):399–415, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [13]
    P. Embrechts and M. Maejima. Selfsimilar Processes. Princeton Series in Applied Mathematics. Princeton University Press, 2002.zbMATHGoogle Scholar
  3. [16]
    B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random variables. Addison-Wesley, Reading, MA, 1954.zbMATHGoogle Scholar
  4. [17]
    K. Górska and K. A. Penson. Lévy stable two-sided distributions: Exact and explicit densities for asymmetric case. Physical Review E, 83:061125, 2011.CrossRefGoogle Scholar
  5. [42]
    V. Pipiras and M. S. Taqqu. Long-Range Dependence and Self-Similarity. Cambridge University Press, 2017.Google Scholar
  6. [45]
    J. Rosiński. Uniqueness of spectral representations of skewed stable processes and stationarity. In H. Kunita and H.-H. Kuo, editors, Stochastic Analysis On Infinite Dimensional Spaces., pages 264–273. Proceedings of the U.S.-Japan Bilateral Seminar, 1994.Google Scholar
  7. [46]
    J. Rosiński. On the structure of stationary stable processes. The Annals of Probability, 23:1163–1187, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [54]
    G. Samorodnitsky. Stochastic Processes and Long Range Dependence. Springer Series in Operations Research and Financial Engineering, Springer, 2016.CrossRefzbMATHGoogle Scholar
  9. [56]
    G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Stochastic Modeling. Chapman & Hall, New York, 1994. Stochastic models with infinite variance.Google Scholar
  10. [57]
    K.-i. Sato. Lévy Processes and Infinitely Divisible Distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2013. Translated from the 1990 Japanese original, Revised edition of the 1999 English translation.Google Scholar
  11. [63]
    V. V. Uchaikin and V. M. Zolotarev. Chance and Stability. Modern Probability and Statistics. VSP, Utrecht, 1999. Stable distributions and their applications, With a foreword by V. Yu. Korolev and Zolotarev.Google Scholar
  12. [69]
    V. M. Zolotarev. One-dimensional Stable Distributions, volume 65 of “Translations of mathematical monographs”. American Mathematical Society, 1986. Translation from the original 1983 Russian edition.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Vladas Pipiras
    • 1
  • Murad S. Taqqu
    • 2
  1. 1.Statistics and Operations ResearchUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Mathematics and StatisticsBoston UniversityBostonUSA

Personalised recommendations