Skip to main content

Risk-Based Therapies for Sickle Cell Disease

  • Chapter
  • First Online:

Abstract

Sickle cell severity varies among genotypes, with HbSS and HbSβ0thalassemia (sickle cell anemia, SCA) classically having more serious complications compared to patients with HbSC or HbSβ+thalassemia. However, clinical complications vary dramatically, even among patients with the same genotype. One of the most fascinating and frustrating aspects of sickle cell care is how people with the same single amino acid substitution can have different clinical complications of differing severity and at different time points. The search for a predictor of disease severity has been ongoing for more than 30 years, and the only currently available validated predictor of a severe outcome of sickle cell disease is transcranial Doppler (TCD). TCD, however, only identifies children with SCA who are at the highest risk of stroke, so predictors for recurrent painful crises or episodes of acute chest syndrome are not available. With the advent of new treatments for people with sickle cell disease like hematopoietic stem cell transplant, risk stratifiers are needed to help clinicians and families make treatment decisions. This chapter reviews work to date on disease severity predictors and highlights how therapeutic improvements for infants with sickle cell disease have made identifying high-risk children more challenging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACS:

Acute chest syndrome

ARC:

Absolute reticulocyte count

CAR:

Central African Republic

CSSCD:

Cooperative Study of Sickle Cell Disease

G6PD:

Glucose-6-phosphate dehydrogenase

GVHD:

Graft-versus-host disease

HbF:

Fetal hemoglobin

HbS:

Sickle hemoglobin

HSCT:

Hematopoietic stem cell transplant

SCA:

Sickle cell anemia (HbSS or HbSβ0thalassemia)

SCD:

Sickle cell disease

SCI:

Silent cerebral infarct

SITT:

Silent infarct transfusion trial

SNP:

Single-nucleotide polymorphism

STOP:

Stroke prevention trial in sickle cell anemia

TCD:

Transcranial Doppler

TNF-A:

Tumor necrosis factor-alpha

VOC:

Vaso-occlusive crisis

References

  1. Brousseau DC, Panepinto JA, Nimmer M, Hoffmann RG. The number of people with sickle-cell disease in the United States: national and state estimates. Am J Hematol. 2010;85(1):77–8.

    PubMed  Google Scholar 

  2. Quinn CT, Rogers ZR, Buchanan GR. Survival of children with sickle cell disease. Blood. 2004;103(11):4023–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shenoy S, Eapen M, Panepinto JA, Logan BR, Wu J, Abraham A, et al. A trial of unrelated donor marrow transplantation for children with severe sickle cell disease. Blood. 2016;128(21):2561–7.

    Article  CAS  PubMed  Google Scholar 

  4. Scott RB. Health care priority and sickle cell anemia. JAMA. 1970;214(4):731–4.

    Article  CAS  PubMed  Google Scholar 

  5. Quinn CT, Rogers ZR, McCavit TL, Buchanan GR. Improved survival of children and adolescents with sickle cell disease. Blood. 2010;115(17):3447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lanzkron S, Carroll CP, Haywood C Jr. Mortality rates and age at death from sickle cell disease: U.S., 1979–2005. Public Health Rep. 2013;128(2):110–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–44.

    Article  CAS  PubMed  Google Scholar 

  8. Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet. 2011;377(9778):1663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F, Carreras J, et al. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood. 2017;129(11):1548–56.

    Article  PubMed  Google Scholar 

  10. Nickel RS, Hendrickson JE, Haight AE. The ethics of a proposed study of hematopoietic stem cell transplant for children with "less severe" sickle cell disease. Blood. 2014;124(6):861–6.

    Article  CAS  PubMed  Google Scholar 

  11. King A, Shenoy S. Evidence-based focused review of the status of hematopoietic stem cell transplantation as treatment of sickle cell disease and thalassemia. Blood. 2014;123(20):3089–94.

    Article  CAS  PubMed  Google Scholar 

  12. Odenheimer DJ, Sarnaik SA, Whitten CF, Rucknagel DL, Sing CF. The relationship between fetal hemoglobin and disease severity in children with sickle cell anemia. Am J Med Genet. 1987;27(3):525–35.

    Article  CAS  PubMed  Google Scholar 

  13. Lande WM, Andrews DL, Clark MR, Braham NV, Black DM, Embury SH, et al. The incidence of painful crisis in homozygous sickle cell disease: correlation with red cell deformability. Blood. 1988;72(6):2056–9.

    CAS  PubMed  Google Scholar 

  14. Kinney TR, Sleeper LA, Wang WC, Zimmerman RA, Pegelow CH, Ohene-Frempong K, et al. Silent cerebral infarcts in sickle cell anemia: a risk factor analysis. The cooperative study of sickle cell disease. Pediatrics. 1999;103(3):640–5.

    Article  CAS  PubMed  Google Scholar 

  15. Miller ST, Sleeper LA, Pegelow CH, Enos LE, Wang WC, Weiner SJ, et al. Prediction of adverse outcomes in children with sickle cell disease. N Engl J Med. 2000;342(2):83–9.

    Article  CAS  PubMed  Google Scholar 

  16. Boyd JH, Macklin EA, Strunk RC, DeBaun MR. Asthma is associated with acute chest syndrome and pain in children with sickle cell anemia. Blood. 2006;108(9):2923–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uong EC, Boyd JH, DeBaun MR. Daytime pulse oximeter measurements do not predict incidence of pain and acute chest syndrome episodes in sickle cell anemia. J Pediatr. 2006;149(5):707–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Field JJ, Macklin EA, Yan Y, Strunk RC, DeBaun MR. Sibling history of asthma is a risk factor for pain in children with sickle cell anemia. Am J Hematol. 2008;83(11):855–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meier ER, Wright EC, Miller JL. Reticulocytosis and anemia are associated with an increased risk of death and stroke in the newborn cohort of the cooperative study of sickle cell disease. Am J Hematol. 2014;89(9):904–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoppe C, Klitz W, Cheng S, Apple R, Steiner L, Robles L, et al. Gene interactions and stroke risk in children with sickle cell anemia. Blood. 2004;103(6):2391–6.

    Article  CAS  PubMed  Google Scholar 

  21. Carpenter SL, Lieff S, Howard TA, Eggleston B, Ware RE. UGT1A1 promoter polymorphisms and the development of hyperbilirubinemia and gallbladder disease in children with sickle cell anemia. Am J Hematol. 2008;83(10):800–3.

    Article  PubMed  Google Scholar 

  22. Rees DC, Dick MC, Height SE, O'Driscoll S, Pohl KR, Goss DE, et al. A simple index using age, hemoglobin, and aspartate transaminase predicts increased intracerebral blood velocity as measured by transcranial Doppler scanning in children with sickle cell anemia. Pediatrics. 2008;121(6):e1628–32.

    Article  PubMed  Google Scholar 

  23. Quinn CT, Variste J, Dowling MM. Haemoglobin oxygen saturation is a determinant of cerebral artery blood flow velocity in children with sickle cell anaemia. Br J Haematol. 2009;145(4):500–5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bernaudin F, Verlhac S, Arnaud C, Kamdem A, Chevret S, Hau I, et al. Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood. 2011;117(4):1130–40. quiz 436

    Article  CAS  PubMed  Google Scholar 

  25. DeBaun MR, Sarnaik SA, Rodeghier MJ, Minniti CP, Howard TH, Iyer RV, et al. Associated risk factors for silent cerebral infarcts in sickle cell anemia: low baseline hemoglobin, sex, and relative high systolic blood pressure. Blood. 2012;119(16):3684–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meier ER, Byrnes C, Lee YT, Wright EC, Schechter AN, Luban NL, et al. Increased reticulocytosis during infancy is associated with increased hospitalizations in sickle cell anemia patients during the first three years of life. PLoS One. 2013;8(8):e70794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DeBaun MR, Rodeghier M, Cohen R, Kirkham FJ, Rosen CL, Roberts I, et al. Factors predicting future ACS episodes in children with sickle cell anemia. Am J Hematol. 2014;89(11):E212–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vance LD, Rodeghier M, Cohen RT, Rosen CL, Kirkham FJ, Strunk RC, et al. Increased risk of severe vaso-occlusive episodes after initial acute chest syndrome in children with sickle cell anemia less than 4 years old: sleep and asthma cohort. Am J Hematol. 2015;90(5):371–5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Belisario AR, Rodrigues CV, Martins ML, Silva CM, Viana MB. Coinheritance of alpha-thalassemia decreases the risk of cerebrovascular disease in a cohort of children with sickle cell anemia. Hemoglobin. 2010;34(6):516–29.

    Article  CAS  PubMed  Google Scholar 

  30. Filho IL, Leite AC, Moura PG, Ribeiro GS, Cavalcante AC, Azevedo FC, et al. Genetic polymorphisms and cerebrovascular disease in children with sickle cell anemia from Rio de Janeiro. Brazil Arq Neuro Psiquiatr. 2011;69(3):431–5.

    Article  Google Scholar 

  31. Flanagan JM, Frohlich DM, Howard TA, Schultz WH, Driscoll C, Nagasubramanian R, et al. Genetic predictors for stroke in children with sickle cell anemia. Blood. 2011;117(24):6681–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bean CJ, Boulet SL, Ellingsen D, Pyle ME, Barron-Casella EA, Casella JF, et al. Heme oxygenase-1 gene promoter polymorphism is associated with reduced incidence of acute chest syndrome among children with sickle cell disease. Blood. 2012;120(18):3822–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thangarajh M, Yang G, Fuchs D, Ponisio MR, McKinstry RC, Jaju A, et al. Magnetic resonance angiography-defined intracranial vasculopathy is associated with silent cerebral infarcts and glucose-6-phosphate dehydrogenase mutation in children with sickle cell anaemia. Br J Haematol. 2012;159(3):352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bean CJ, Boulet SL, Yang G, Payne AB, Ghaji N, Pyle ME, et al. Acute chest syndrome is associated with single nucleotide polymorphism-defined beta globin cluster haplotype in children with sickle cell anaemia. Br J Haematol. 2013;163(2):268–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheehan VA, Luo Z, Flanagan JM, Howard TA, Thompson BW, Wang WC, et al. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes. Am J Hematol. 2013;88(7):571–6.

    Article  CAS  PubMed  Google Scholar 

  36. Adams R, McKie V, Nichols F, Carl E, Zhang DL, McKie K, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med. 1992;326(9):605–10.

    Article  CAS  PubMed  Google Scholar 

  37. Adams RJ, McKie VC, Carl EM, Nichols FT, Perry R, Brock K, et al. Long-term stroke risk in children with sickle cell disease screened with transcranial Doppler. Ann Neurol. 1997;42(5):699–704.

    Article  CAS  PubMed  Google Scholar 

  38. Tam DA. Protein C and protein S activity in sickle cell disease and stroke. J Child Neurol. 1997;12(1):19–21.

    Article  CAS  PubMed  Google Scholar 

  39. Adams RJ, McKie VC, Brambilla D, Carl E, Gallagher D, Nichols FT, et al. Stroke prevention trial in sickle cell anemia. Control Clin Trials. 1998;19(1):110–29.

    Article  CAS  PubMed  Google Scholar 

  40. Adams RJ, Brambilla DJ, Granger S, Gallagher D, Vichinsky E, Abboud MR, et al. Stroke and conversion to high risk in children screened with transcranial Doppler ultrasound during the STOP study. Blood. 2004;103(10):3689–94.

    Article  CAS  PubMed  Google Scholar 

  41. Kwiatkowski JL, Granger S, Brambilla DJ, Brown RC, Miller ST, Adams RJ, et al. Elevated blood flow velocity in the anterior cerebral artery and stroke risk in sickle cell disease: extended analysis from the STOP trial. Br J Haematol. 2006;134(3):333–9.

    Article  PubMed  Google Scholar 

  42. Quinn CT, Sargent JW. Daytime steady-state haemoglobin desaturation is a risk factor for overt stroke in children with sickle cell anaemia. Br J Haematol. 2008;140(3):336–9.

    Article  CAS  PubMed  Google Scholar 

  43. Bhatnagar P, Keefer JR, Casella JF, Barron-Casella EA, Bean CJ, Hooper CW, et al. Association between baseline fetal hemoglobin levels and incidence of severe vaso-occlusive pain episodes in children with sickle cell anemia. Pediatr Blood Cancer. 2013;60(10):E125–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adams RJ, Kutlar A, McKie V, Carl E, Nichols FT, Liu JC, et al. Alpha thalassemia and stroke risk in sickle cell anemia. Am J Hematol. 1994;45(4):279–82.

    Article  CAS  PubMed  Google Scholar 

  45. Styles LA, Hoppe C, Klitz W, Vichinsky E, Lubin B, Trachtenberg E. Evidence for HLA-related susceptibility for stroke in children with sickle cell disease. Blood. 2000;95(11):3562–7.

    CAS  PubMed  Google Scholar 

  46. Hoppe C, Cheng S, Grow M, Silbergleit A, Klitz W, Trachtenberg E, et al. A novel multilocus genotyping assay to identify genetic predictors of stroke in sickle cell anaemia. Br J Haematol. 2001;114(3):718–20.

    Article  CAS  PubMed  Google Scholar 

  47. Sarnaik SA, Ballas SK. Molecular characteristics of pediatric patients with sickle cell anemia and stroke. Am J Hematol. 2001;67(3):179–82.

    Article  CAS  PubMed  Google Scholar 

  48. Hsu LL, Miller ST, Wright E, Kutlar A, McKie V, Wang W, et al. Alpha thalassemia is associated with decreased risk of abnormal transcranial Doppler ultrasonography in children with sickle cell anemia. J Pediatr Hematol Oncol. 2003;25(8):622–8.

    Article  PubMed  Google Scholar 

  49. Hoppe C, Klitz W, D'Harlingue K, Cheng S, Grow M, Steiner L, et al. Confirmation of an association between the TNF(−308) promoter polymorphism and stroke risk in children with sickle cell anemia. Stroke. 2007;38(8):2241–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hyacinth HI, Gee BE, Adamkiewicz TV, Adams RJ, Kutlar A, Stiles JK, et al. Plasma BDNF and PDGF-AA levels are associated with high TCD velocity and stroke in children with sickle cell anemia. Cytokine. 2012;60(1):302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Joly P, Garnier N, Kebaili K, Renoux C, Dony A, Cheikh N, et al. G6PD deficiency and absence of alpha-thalassemia increase the risk for cerebral vasculopathy in children with sickle cell anemia. Eur J Haematol. 2015;96(4):404–8.

    Google Scholar 

  52. Stevens MC, Hayes RJ, Vaidya S, Serjeant GR. Fetal hemoglobin and clinical severity of homozygous sickle cell disease in early childhood. J Pediatr. 1981;98(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  53. Bailey K, Morris JS, Thomas P, Serjeant GR. Fetal haemoglobin and early manifestations of homozygous sickle cell disease. Arch Dis Child. 1992;67(4):517–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thomas PW, Higgs DR, Serjeant GR. Benign clinical course in homozygous sickle cell disease: a search for predictors. J Clin Epidemiol. 1997;50(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  55. Foucan L, Ekouevi D, Etienne-Julan M, Salmi LR, Diara JP, Paediatric Cohort of Group. Early onset dactylitis associated with the occurrence of severe events in children with sickle cell anaemia. The Paediatric Cohort of Guadeloupe (1984–99). Paediatr Perinat Epidemiol. 2006;20(1):59–66.

    Article  PubMed  Google Scholar 

  56. Silva CM, Giovani P, Viana MB. High reticulocyte count is an independent risk factor for cerebrovascular disease in children with sickle cell anemia. Pediatr Blood Cancer. 2011;56(1):116–21.

    Article  PubMed  Google Scholar 

  57. Al-Saqladi AW, Bin-Gadeem HA, Brabin BJ. Utility of plasma transferrin receptor, ferritin and inflammatory markers in children with sickle cell disease. Paediatr Int Child Health. 2012;32(1):27–34.

    Article  PubMed  Google Scholar 

  58. Lagunju I, Sodeinde O, Brown B, Akinbami F, Adedokun B. Transcranial Doppler ultrasonography in children with sickle cell anemia: Clinical and laboratory correlates for elevated blood flow velocities. J Clin Ultrasound. 2014;42(2):89–95.

    Article  PubMed  Google Scholar 

  59. Bernaudin F, Verlhac S, Chevret S, Torres M, Coic L, Arnaud C, et al. G6PD deficiency, absence of alpha-thalassemia, and hemolytic rate at baseline are significant independent risk factors for abnormally high cerebral velocities in patients with sickle cell anemia. Blood. 2008;112(10):4314–7.

    Article  CAS  PubMed  Google Scholar 

  60. Belisário AR, Martins ML, Brito AMS, Rodrigues CV, Silva CM, Viana MB. ß-Globin gene cluster haplotypes in a cohort of 221 children with sickle cell anemia or Sß-thalassemia and their association with clinical and hematological features. Acta Haematol. 2010;124(3):162–70.

    Article  PubMed  Google Scholar 

  61. Cajado C, Cerqueira BA, Couto FD, Moura-Neto JP, Vilas-Boas W, Dorea MJ, et al. TNF-alpha and IL-8: serum levels and gene polymorphisms (−308G>A and -251A>T) are associated with classical biomarkers and medical history in children with sickle cell anemia. Cytokine. 2011;56(2):312–7.

    Article  CAS  PubMed  Google Scholar 

  62. Redha NA, Mahdi N, Al-Habboubi HH, Almawi WY. Impact of VEGFA -583C > T polymorphism on serum VEGF levels and the susceptibility to acute chest syndrome in pediatric patients with sickle cell disease. Pediatr Blood Cancer. 2014;61(12):2310–2.

    Article  CAS  PubMed  Google Scholar 

  63. Badr AK, Hassan MK. The influence of fetal hemoglobin on clinical and hematological variables of children and adolescents with sickle cell anemia in Basra. South Iraq Iran J Blood Cancer. 2015;7(4):179–83.

    Google Scholar 

  64. Silva IV, Reis AF, Palare MJ, Ferrao A, Rodrigues T, Morais A. Sickle cell disease in children: chronic complications and search of predictive factors for adverse outcomes. Eur J Haematol. 2015;94(2):157–61.

    Article  PubMed  Google Scholar 

  65. Tasian SK, Loh ML, Hunger SP. Childhood acute lymphoblastic leukemia: integrating genomics into therapy. Cancer. 2015;121(20):3577–90.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Labie D, Pagnier J, Lapoumeroulie C, Rouabhi F, Dunda-Belkhodja O, Chardin P, et al. Common haplotype dependency of high G gamma-globin gene expression and high Hb F levels in beta-thalassemia and sickle cell anemia patients. Proc Natl Acad Sci U S A. 1985;82(7):2111–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bitoungui VJ, Pule GD, Hanchard N, Ngogang J, Wonkam A. Beta-globin gene haplotypes among cameroonians and review of the global distribution: is there a case for a single sickle mutation origin in Africa? OMICS. 2015;19(3):171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood. 2008;112(10):3927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nixon R. Statement of signing the national sickle cell anemia control act 1972. http://www.presidency.ucsb.edu/ws/?pid=3413.

  70. Gaston M, Rosse WF. The cooperative study of sickle cell disease: review of study design and objectives. Am J Pediatr Hematol Oncol. 1982;4(2):197–201.

    CAS  PubMed  Google Scholar 

  71. Arkuszewski M, Krejza J, Chen R, Kwiatkowski JL, Ichord R, Zimmerman R, et al. Sickle cell disease in children: accuracy of imaging transcranial Doppler ultrasonography in detection of intracranial arterial stenosis. Neuroradiol J. 2012;25(4):402–10.

    Article  CAS  PubMed  Google Scholar 

  72. Noguchi CT, Rodgers GP, Serjeant G, Schechter AN. Levels of fetal hemoglobin necessary for treatment of sickle cell disease. N Engl J Med. 1988;318(2):96–9.

    Article  CAS  PubMed  Google Scholar 

  73. Powars DR, Weiss JN, Chan LS, Schroeder WA. Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood. 1984;63(4):921–6.

    CAS  PubMed  Google Scholar 

  74. Maier-Redelsperger M, Noguchi CT, de Montalembert M, Rodgers GP, Schechter AN, Gourbil A, et al. Variation in fetal hemoglobin parameters and predicted hemoglobin S polymerization in sickle cell children in the first two years of life: Parisian prospective study on sickle cell disease. Blood. 1994;84(9):3182–8.

    CAS  PubMed  Google Scholar 

  75. Wang WC, Pavlakis SG, Helton KJ, McKinstry RC, Casella JF, Adams RJ, et al. MRI abnormalities of the brain in one-year-old children with sickle cell anemia. Pediatr Blood Cancer. 2008;51(5):643–6.

    Article  PubMed  Google Scholar 

  76. Duckett JR, Constantine G. The Kleihauer technique: an accurate method of quantifying fetomaternal haemorrhage? Br J Obstet Gynaecol. 1997;104(7):845–6.

    Article  CAS  PubMed  Google Scholar 

  77. Thein SL, Menzel S, Lathrop M, Garner C. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet. 2009;18(R2):R216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boyd JH, Macklin EA, Strunk RC, DeBaun MR. Asthma is associated with increased mortality in individuals with sickle cell anemia. Haematologica. 2007;92(8):1115–8.

    Article  PubMed  Google Scholar 

  79. Lettre G. The search for genetic modifiers of disease severity in the beta-hemoglobinopathies. Cold Spring Harbor Perspect Med. 2012;2(10):pii:a015032.

    Article  Google Scholar 

  80. Ware RE, Davis BR, Schultz WH, Brown RC, Aygun B, Sarnaik S, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD with transfusions changing to hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet. 2016;387(10019):661–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Riehm Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Meier, E.R. (2018). Risk-Based Therapies for Sickle Cell Disease. In: Meier, E., Abraham, A., Fasano, R. (eds) Sickle Cell Disease and Hematopoietic Stem Cell Transplantation . Springer, Cham. https://doi.org/10.1007/978-3-319-62328-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62328-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62327-6

  • Online ISBN: 978-3-319-62328-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics