Skip to main content

Haploidentical Hematopoietic Cell Transplantation for Sickle Cell Disease

  • Chapter
  • First Online:
Sickle Cell Disease and Hematopoietic Stem Cell Transplantation

Abstract

Hematopoietic stem cell transplantation is curative in over 90% of patients with sickle cell disease when a matched sibling is the donor, but only 18% of patients have such a donor. Haploidentical (i.e., half human leukocyte antigen (HLA)-matched relatives) could potentially solve this donor issue and thus provide a treatment option for essentially every patient. Ongoing investigation using either in vivo or ex vivo T-cell depletion strategies has shown encouraging results with respect to low rates of graft-versus-host disease and transplant-related mortality. However, graft rejection has remained a problem in this HLA-disparate transplantation approach. Advances in the areas of in vivo and ex vivo T-cell depletion and optimization of the transplant conditioning regimen have led to promising results from ongoing clinical trials. Ultimately, innovative approaches such as cell therapies may be needed to make haploidentical transplantation a safe and effective curative option for sickle cell disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gluckman E, Cappelli B, Bernaudin F, et al. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood. 2016;129(11):1548–56.

    Article  PubMed  Google Scholar 

  2. Walters MC, Patience M, Leisenring W, et al. Barriers to bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant. 1996;2(2):100–4.

    CAS  PubMed  Google Scholar 

  3. Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339–48.

    Article  CAS  PubMed  Google Scholar 

  4. Mentzer WC, Heller S, Pearle PR, Hackney E, Vichinsky E. Availability of related donors for bone-marrow transplantation in sickle-cell-anemia. Am J Pediatr Hematol Oncol. 1994;16(1):27–9.

    CAS  PubMed  Google Scholar 

  5. Dew A, Collins D, Artz A, et al. Paucity of HLA-identical unrelated donors for African-Americans with hematologic malignancies: the need for new donor options. Biol Blood Marrow Transplant. 2008;14(8):938–41.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Justus D, Perez-Albuerne E, Dioguardi J, Jacobsohn D, Abraham A. Allogeneic donor availability for hematopoietic stem cell transplantation in children with sickle cell disease. Pediatr Blood Cancer. 2015;62(7):1285–7.

    Article  CAS  PubMed  Google Scholar 

  7. Bunn D, Lea CK, Bevan DJ, Higgins RM, Hendry BM. The pharmacokinetics of anti-thymocyte globulin (ATG) following intravenous infusion in man. Clin Nephrol. 1996;45(1):29–32.

    CAS  PubMed  Google Scholar 

  8. Eto M, Mayumi H, Tomita Y, et al. Specific destruction of host-reactive mature T cells of donor origin prevents graft-versus-host disease in cyclophosphamide-induced tolerant mice. J Immunol. 1991;146(5):1402–9.

    CAS  PubMed  Google Scholar 

  9. Nomoto K, Eto M, Yanaga K, Nishimura Y, Maeda T, Nomoto K. Interference with cyclophosphamide-induced skin allograft tolerance by cyclosporin A. J Immunol. 1992;149(8):2668–74.

    CAS  PubMed  Google Scholar 

  10. Colson YL, Wren SM, Schuchert MJ, et al. A nonlethal conditioning approach to achieve durable multilineage mixed chimerism and tolerance across major, minor, and hematopoietic histocompatibility barriers. J Immunol. 1995;155(9):4179–88.

    CAS  PubMed  Google Scholar 

  11. Luznik L, Jalla S, Engstrom LW, Iannone R, Fuchs EJ. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98(12):3456–64.

    Article  CAS  PubMed  Google Scholar 

  12. Luznik L, Engstrom LW, Iannone R, Fuchs EJ. Posttransplantation cyclophosphamide facilitates engraftment of major histocompatibility complex-identical allogeneic marrow in mice conditioned with low-dose total body irradiation. Biol Blood Marrow Transplant. 2002;8(3):131–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood. 1990;75(10):1947–50.

    CAS  PubMed  Google Scholar 

  14. Jones RJ, Barber JP, Vala MS, et al. Assessment of aldehyde dehydrogenase in viable cells. Blood. 1995;85(10):2742–6.

    CAS  PubMed  Google Scholar 

  15. O'Donnell PV, Luznik L, Jones RJ, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8(7):377–86.

    Article  PubMed  Google Scholar 

  16. Luznik L, O’Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brunstein CG, Fuchs EJ, Carter SL, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118(2):282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brodsky RA, Luznik L, Bolanos-Meade J, Leffell MS, Jones RJ, Fuchs EJ. Reduced intensity HLA-haploidentical BMT with post transplantation cyclophosphamide in nonmalignant hematologic diseases. Bone Marrow Transplant. 2008;42(8):523–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bolanos-Meade J, Fuchs EJ, Luznik L, et al. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood. 2012;120(22):4285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernaudin F, Socie G, Kuentz M, et al. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood. 2007;110(7):2749–56.

    Article  CAS  PubMed  Google Scholar 

  21. Dhedin N, de la Fuente J, Bernaudin F, et al. Haploidentical bone marrow transplant with post-transplant cytoxan plus thiotepa improves donor engraftment in patients with sickle cell anemia: results of an international learning collaborative. Paper presented at: American Society of Hematology annual meeting & exposition; 5 Dec 2016, San Diego, CA.

    Google Scholar 

  22. Hsieh MM, Fitzhugh CD, Weitzel RP, et al. Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA. 2014;312(1):48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marsh RA, Lane A, Mehta PA, et al. Alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following alemtuzumab, fludarabine, and melphalan RIC HCT. Blood. 2016;127(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  24. Berger M, Lanino E, Cesaro S, et al. Feasibility and outcome of haploidentical hematopoietic stem cell transplantation with post-transplant high-dose cyclophosphamide for children and adolescents with hematologic malignancies: an AIEOP-GITMO retrospective multicenter study. Biol Blood Marrow Transplant. 2016;22(5):902–9.

    Article  CAS  PubMed  Google Scholar 

  25. de la Fuente J, O’Boyle F, Harrington Y, et al. Haploidentical BMT with a post-infusion of stem cells cyclophosphamide approach is feasible and leads to a high rate of donor engraftment in haemoglobinopathies allowing universal application of transplantation. Blood. 2015;126(23):4317.

    Google Scholar 

  26. Kasamon YL, Luznik L, Leffell MS, et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant. 2010;16(4):482–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soiffer RJ, Lerademacher J, Ho V, et al. Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Blood. 2011;117(25):6963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krause DS, Fackler MJ, Civin CI, May WS. CD34: structure, biology, and clinical utility. Blood. 1996;87(1):1–13.

    CAS  PubMed  Google Scholar 

  29. Villalon L, Odriozola J, Larana JG, et al. Autologous peripheral blood progenitor cell transplantation with <2 × 10(6) CD34(+)/kg: an analysis of variables concerning mobilisation and engraftment. Hematol J. 2000;1(6):374–81.

    Article  CAS  PubMed  Google Scholar 

  30. Reisner Y, Martelli MF. Bone marrow transplantation across HLA barriers by increasing the number of transplanted cells. Immunol Today. 1995;16(9):437–40.

    Article  CAS  PubMed  Google Scholar 

  31. Handgretinger R, Schumm M, Lang P, et al. Transplantation of megadoses of purified haploidentical stem cells. Ann N Y Acad Sci. 1999;872:351–61. discussion 361–2

    Article  CAS  PubMed  Google Scholar 

  32. Dvorak CC, Gilman AL, Horn B, et al. Haploidentical related-donor hematopoietic cell transplantation in children using megadoses of CliniMACs-selected CD34(+) cells and a fixed CD3(+) dose. Bone Marrow Transplant. 2013;48(4):508–13.

    Article  CAS  PubMed  Google Scholar 

  33. Dallas MH, Triplett B, Shook DR, et al. Long-term outcome and evaluation of organ function in pediatric patients undergoing haploidentical and matched related hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2013;19(5):820–30.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Triplett BM, Shook DR, Eldridge P, et al. Rapid memory T-cell reconstitution recapitulating CD45RA-depleted haploidentical transplant graft content in patients with hematologic malignancies. Bone Marrow Transplant. 2015;50(7):968–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Airoldi I, Bertaina A, Prigione I, et al. Gammadelta T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-alphabeta+/CD19+ lymphocytes. Blood. 2015;125(15):2349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bertaina A, Merli P, Rutella S, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124(5):822–6.

    Article  CAS  PubMed  Google Scholar 

  37. Diaz MA, Perez-Martinez A, Herrero B, et al. Prognostic factors and outcomes for pediatric patients receiving an haploidentical relative allogeneic transplant using CD3/CD19-depleted grafts. Bone Marrow Transplant. 2016;51(9):1211–6.

    Article  CAS  PubMed  Google Scholar 

  38. Krishnamurti L, Kharbanda S, Biernacki MA, et al. Stable long-term donor engraftment following reduced-intensity hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2008;14(11):1270–8.

    Article  PubMed  Google Scholar 

  39. Andreani M, Testi M, Gaziev J, et al. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease. Haematologica. 2011;96(1):128–33.

    Article  PubMed  Google Scholar 

  40. Mancusi A, Ruggeri L, Urbani E, et al. Haploidentical hematopoietic transplantation from KIR ligand-mismatched donors with activating KIRs reduces nonrelapse mortality. Blood. 2015;125(20):3173–82.

    Article  CAS  PubMed  Google Scholar 

  41. Chen DF, Prasad VK, Broadwater G, et al. Differential impact of inhibitory and activating Killer Ig-Like Receptors (KIR) on high-risk patients with myeloid and lymphoid malignancies undergoing reduced intensity transplantation from haploidentical related donors. Bone Marrow Transplant. 2012;47(6):817–23.

    Article  CAS  PubMed  Google Scholar 

  42. Littera R, Orru N, Caocci G, et al. Interactions between killer immunoglobulin-like receptors and their human leucocyte antigen Class I ligands influence the outcome of unrelated haematopoietic stem cell transplantation for thalassaemia: a novel predictive algorithm. Br J Haematol. 2012;156(1):118–28.

    Article  CAS  PubMed  Google Scholar 

  43. Leung W. Use of NK cell activity in cure by transplant. Br J Haematol. 2011;155(1):14–29.

    Article  CAS  PubMed  Google Scholar 

  44. Leung W, Iyengar R, Turner V, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172(1):644–50.

    Article  CAS  PubMed  Google Scholar 

  45. Oevermann L, Michaelis SU, Mezger M, et al. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood. 2014;124(17):2744–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shook DR, Triplett BM, Eldridge PW, Kang G, Srinivasan A, Leung W. Haploidentical stem cell transplantation augmented by CD45RA negative lymphocytes provides rapid engraftment and excellent tolerability. Pediatr Blood Cancer. 2015;62(4):666–73.

    Article  CAS  PubMed  Google Scholar 

  47. Devine SM, Carter S, Soiffer RJ, et al. Low risk of chronic graft-versus-host disease and relapse associated with T cell-depleted peripheral blood stem cell transplantation for acute myelogenous leukemia in first remission: results of the blood and marrow transplant clinical trials network protocol 0303. Biol Blood Marrow Transplant. 2011;17(9):1343–51.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sodani P, Isgrò A, Gaziev J, et al. Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with thalassemia. Blood. 2010;115(6):1296–302.

    Article  CAS  PubMed  Google Scholar 

  49. Sodani P, Isgro A, Gaziev J, et al. T cell-depleted hla-haploidentical stem cell transplantation in thalassemia young patients. Pediatr Rep. 2011;3(Suppl 2):e13.

    PubMed  PubMed Central  Google Scholar 

  50. Abikoff C, Talano J-A, Keever-Taylor CA, et al. Treatment of high-risk sickle cell disease (SCD) with familial haploidentical (FHI) T-cell depleted (TCD) stem cell transplantation with T-cell addback (IND 14359). Biol Blood Marrow Transplant. 2015;21:S90–1.

    Article  Google Scholar 

  51. Hamill D, Shenoy S, Morris E, et al. Robust donor chimerism and engraftment following familial haploidentical (FHI) (CD34 enriched and t-cell addback) allogeneic stem cell transplantation in patients with high risk sickle cell disease (SCD). Biol Blood Marrow Transplant. 2016;22(3):S95–S96.

    Google Scholar 

  52. Li Pira G, Di Cecca S, Montanari M, Moretta L, Manca F. Specific removal of alloreactive T-cells to prevent GvHD in hematopoietic stem cell transplantation: rationale, strategies and perspectives. Blood Rev. 2016;30(4):297–307.

    Article  CAS  PubMed  Google Scholar 

  53. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12(5):383–96.

    Article  PubMed  Google Scholar 

  54. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9.

    Article  CAS  PubMed  Google Scholar 

  55. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    Article  CAS  PubMed  Google Scholar 

  56. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214–9.

    Article  CAS  PubMed  Google Scholar 

  57. Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20(1):187–95.

    Article  CAS  PubMed  Google Scholar 

  58. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood. 2005;106(13):4057–65.

    Article  CAS  PubMed  Google Scholar 

  59. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood. 2006;108(6):2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Myers GD, Bollard CM, Wu MF, et al. Reconstitution of adenovirus-specific cell-mediated immunity in pediatric patients after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2007;39(11):677–86.

    Article  CAS  PubMed  Google Scholar 

  61. Rustia E, Violago L, Jin Z, et al. Risk factors and utility of a risk-based algorithm for monitoring cytomegalovirus, Epstein-Barr virus, and adenovirus infections in pediatric recipients after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(9):1646–53.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Parikh SH, Mendizabal A, Benjamin CL, et al. A novel reduced intensity conditioning regimen for unrelated umbilical cord blood transplantation in children with non-malignant diseases. Biol Blood Marrow Transplant. 2014;20(3):326–36.

    Article  PubMed  Google Scholar 

  63. Avivi I, Chakrabarti S, Milligan DW, et al. Incidence and outcome of adenovirus disease in transplant recipients after reduced-intensity conditioning with alemtuzumab. Biol Blood Marrow Transplant. 2004;10(3):186–94.

    Article  PubMed  Google Scholar 

  64. Feuchtinger T, Lucke J, Hamprecht K, et al. Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2005;128(4):503–9.

    Article  PubMed  Google Scholar 

  65. Gerdemann U, Katari UL, Papadopoulou A, et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther. 2013;21(11):2113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Leen AM, Bollard CM, Mendizabal AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leen AM, Christin A, Myers GD, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114(19):4283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):1160–6.

    Article  CAS  PubMed  Google Scholar 

  69. Hanley PJ, Shaffer DR, Cruz CR, et al. Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein-Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy. 2011;13(8):976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melenhorst JJ, Leen AM, Bollard CM, et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010;116(22):4700–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma CK, Blyth E, Clancy L, et al. Addition of varicella zoster virus-specific T cells to cytomegalovirus, Epstein-Barr virus and adenovirus tri-specific T cells as adoptive immunotherapy in patients undergoing allogeneic hematopoietic stem cell transplantation. Cytotherapy. 2015;17(10):1406–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth O. Stenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Stenger, E.O., Abraham, A. (2018). Haploidentical Hematopoietic Cell Transplantation for Sickle Cell Disease. In: Meier, E., Abraham, A., Fasano, R. (eds) Sickle Cell Disease and Hematopoietic Stem Cell Transplantation . Springer, Cham. https://doi.org/10.1007/978-3-319-62328-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62328-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62327-6

  • Online ISBN: 978-3-319-62328-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics