Advertisement

BJT-Based, Energy-Efficient Temperature Sensors

  • Kamran Souri
  • Kofi A. A. Makinwa
Chapter
  • 704 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

As was shown in the previous chapter, the zoom-ADC is well suited for use in energy-efficient temperature sensors. It combines the strengths of SAR- and ΔΣ-ADCs to realize an accurate, and energy-efficient temperature to digital conversion. In this chapter, a sensor prototype that employs a 1 st -order zoom-ADC is described. It is compact and power efficient, requiring only a few μW to operate. Its energy-efficiency, however, is limited, due to the use of an inherently slow 1 st -order ΔΣ modulator. To improve energy-efficiency, a second prototype is presented, which requires less power to operate, while employing a 2 nd -order zoom-ADC and a faster sampling scheme. Finally, a third prototype for sensing very high temperatures ( > 150C) is presented, which uses robust techniques to overcome the different sources of temperature sensing errors at such temperatures.

Keywords

Final Conversion Step Bipolar Cores Coarse Conversion Military Temperature Range Thermal Calibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Souri, K.A.A. Makinwa, A 0. 12 mm2 7. 4 μW micropower temperature sensor with an inaccuracy of ± 0. 2 C (3σ) from − 30 C to 125 C. IEEE J. Solid State Circuits, 46(7), 1693–1700 (2011)Google Scholar
  2. 2.
    M.A.P. Pertijs, J.H. Huijsing, Precision Temperature Sensors in CMOS Technology (Springer, Dordrecht, 2006)Google Scholar
  3. 3.
    M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS temperature sensor with a 3σ inaccuracy of ± 0. 1 C from − 55 C to 125 C. IEEE J. Solid State Circuits 40(12), 2805–2815 (2005)Google Scholar
  4. 4.
    K. Souri, M. Kashmiri, K.A.A. Makinwa, A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of ± 0. 25 C (3σ) from −40 to 125 C, in Digest of Technical Papers ISSCC, Feb 2010, pp. 310–311Google Scholar
  5. 5.
    K. Souri, K.A.A. Makinwa, A 0.12 mm2 7. 4 μW micropower temperature sensor with an inaccuracy of ± 0. 2 C (3σ) from − 30 C to 125 C, in Proceedings of ESSCIRC, Sept 2010, pp. 282–285Google Scholar
  6. 6.
    M.G. Degrauwe, J. Rijmenants, E.A. Vittoz, H.J. DeMan, Adaptive biasing CMOS amplifiers. IEEE J. Solid State Circuits SC-17, 522–528 (1982)CrossRefGoogle Scholar
  7. 7.
    D. Schinkel, R.P. de Boer, A.J. Annema, A.J.M. van Tuijl, A 1-V 15 μW high-accuracy temperature switch. Springer Analog Integr. Circ. Sig. Process 41(1), 13–20 (2004)CrossRefGoogle Scholar
  8. 8.
    A.L. Aita, M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0. 25 C (3σ) from − 70 C to 130 C, in Digest of Technical Papers ISSCC, Feb 2009, pp. 342–343Google Scholar
  9. 9.
    R.C. Yen, P.R. Gray, A MOS switched capacitor instrumentation amplifier. IEEE J. Solid State Circuits SC-17(6), 1091–1097 (1982)Google Scholar
  10. 10.
    K. Souri, Y. Chae, K.A.A. Makinwa, A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0. 15 C (3σ) from − 55 C to 125 C. IEEE J. Solid-State Circuits 48(1), 292–301 (2013)Google Scholar
  11. 11.
    K.Y. Nam, S.-M. Lee, D.K. Su, B.A. Wooley, A low-voltage low-power sigma-delta modulator for broadband analog-to-digital conversion. IEEE J. Solid State Circuits 40(9), 1855–1864 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Chae, G. Han, Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE J. Solid State Circuits 44(2), 458–472 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Markus, J. Silva, G.C. Temes, Theory and applications of incremental delta-sigma converters. IEEE Trans. Circuits Syst. I 51(4), 678–690 (2004)CrossRefGoogle Scholar
  14. 14.
    K. Souri, K.A.A. Makinwa, Ramp calibration of temperature sensors, in Proceedings of IWASI, June 2011, pp. 282–285Google Scholar
  15. 15.
    M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa, J.H. Huijsing, Voltage calibration of smart temperature sensors, in Proceedings of IEEE Sensors, Oct 2008, pp. 756–759Google Scholar
  16. 16.
    A. Hastings, The Art of Analog Layout (Prentice Hall, New Jersey, 2001)Google Scholar
  17. 17.
    F. Fruett, G.C.M. Meijer, A. Bakker, Minimization of the mechanical-stress-induced inaccuracy in bandgap voltage references. IEEE J. Solid State Circuits 38(7), 1288–1291 (2003)CrossRefGoogle Scholar
  18. 18.
    J.F. Creemer, F. Fruett, G.C. Meijer, P.J. French, The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J. 1(2), 98–108 (2001)CrossRefGoogle Scholar
  19. 19.
    S.Z. Asl et al., A 1. 55 × 0. 85 mm2 3 ppm 1. 0 μA 32.768 kHz MEMS-based oscillator, in Digest of Technical Papers, Feb 2014, pp. 226–227Google Scholar
  20. 20.
    C.-K. Wu et al., A 80 kS/s 36 μW resistor-based temperature sensor using BGR-free SAR ADC with an unevenly-weighted resistor string in 0. 18 μm CMOS, in IEEE Symposium on VLSI Circuits, June 2011, pp. 222–223Google Scholar
  21. 21.
    M. Law, A. Bermark, A 405-nW CMOS temperature sensor based on linear MOS operation. IEEE Trans. Circuits Syst. II 56(12), 891–895 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Souri, K. Souri, K.A.A. Makinwa, A 40 μW CMOS temperature sensor with an inaccuracy of ± 0. 4 C (3σ) from − 55 C to 200 C, in Proceedings of ESSCIRC, Sept 2013, pp. 221–224Google Scholar
  23. 23.
    A.L. Aita et al., A low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0. 25 C (3σ) from −70 to 130 C. IEEE Sens. J. 13, 1840–1848 (2013)Google Scholar
  24. 24.
    R.A. Bianchi et al., CMOS compatible temperature sensor based on the lateral bipolar transistor for very wide temperature range applications. Sens. Actuators A 71(1–2), 3–9 (1998)CrossRefGoogle Scholar
  25. 25.
    ADT7312 Data Sheet (Analog Devices Inc., Norwood, 2012), www.analog.com
  26. 26.
    LM95172 Data Sheet (Texas Instruments Inc., Dallas, 2013), www.ti.com
  27. 27.
    C.P.L. van Vroonhoven, K.A.A. Makinwa, A ± 0. 4 C (3σ)−70 to 200 C time-domain temperature sensor based on heat diffusion in Si and SiO2, in Digest of Technical Papers, Feb 2012, pp. 204–206Google Scholar
  28. 28.
    A.L. Aita, K.A.A. Makinwa, Low-power operation of a precision CMOS temperature sensor based on substrate PNPs, in Proceedings of IEEE Sensors, Oct 2007, pp. 856–859Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kamran Souri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.SiTime Corp.Santa ClaraUSA
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations