Advertisement

Readout Methods for BJT-Based Temperature Sensors

  • Kamran Souri
  • Kofi A. A. Makinwa
Chapter
  • 699 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

As discussed in the previous chapter, BJT-based temperature sensors are promising candidates for use in wireless temperature sensing applications. In this chapter, we first describe the operating principle of BJT-based sensors, followed by an overview of various readout methods. The energy-efficiency of these methods is then discussed, and compared to the ultimate achievable efficiency of BJT-based sensors.

References

  1. 1.
    M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS temperature sensor with a 3σ inaccuracy of ± 0. 1C from − 55C to 125C. IEEE J. Solid State Circuits 40(12), 2805–2815 (2005)Google Scholar
  2. 2.
    A.L. Aita, M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0. 25C (3σ) from − 70C to 130C, in Digest of Technical Papers ISSCC, Feb 2009, pp. 342–343Google Scholar
  3. 3.
    J.F. Creemer, F. Fruett, G.C. Meijer, P.J. French, The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J. 1(2), 98–108 (2001)CrossRefGoogle Scholar
  4. 4.
    F. Fruett, G.C. Meijer, The Piezojunction Effect in Silicon Integrated Circuits and Sensors (Kluwer Academic, Boston, 2002)Google Scholar
  5. 5.
    M.A.P. Pertijs, J.H. Huijsing, Precision Temperature Sensors in CMOS Technology (Springer, Dordrecht, 2006)Google Scholar
  6. 6.
    G. Wang, G.C. Meijer, The temperature characteristics of bipolar transistors fabricated in CMOS technology. Sens. Actuators A 87, 81–89 (2000)CrossRefGoogle Scholar
  7. 7.
    M.A.P. Pertijs, A. Niederkorn, M. Xu, B. McKillop, A. Bakker, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0. 5C from − 50C to 120C. IEEE J. Solid State Circuits 40(2), 454–461 (2005)Google Scholar
  8. 8.
    K. Souri, An energy-efficient smart temperature sensor for RFID applications. M.Sc. dissertation, Delft University of Technology, Delft, Oct. 2009Google Scholar
  9. 9.
    G.C. Meijer, Integrated circuits and components for bandgap references and temperature transducers. Ph.D. dissertation, Delft University of Technology, Delft, March 1982Google Scholar
  10. 10.
    A. Bakker, J.H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors (Kluwer Academic, Boston, 2000)CrossRefGoogle Scholar
  11. 11.
    M. Law, S. Lu, T. Wu, A. Bermak, P. Mak, R.P. Martins, A 1. 1μW CMOS smart temperature sensor with an inaccuracy of ± 0. 2C (3σ) for clinical temperature monitoring. IEEE Sens. J. 16(8), 2272–2281 (2016)Google Scholar
  12. 12.
    K.B. Klaassen, Digitally controlled absolute voltage division. IEEE Trans. Instrum. Meas. 24(2), 106–112 (1975)CrossRefGoogle Scholar
  13. 13.
    A. Hastings, The Art of Analog Layout (Prentice Hall, New Jersey, 2001)Google Scholar
  14. 14.
    K.A.A. Makinwa, Smart Temperature Sensor Survey [Online]. Available: http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls
  15. 15.
    K. Souri, Y. Chae, K.A.A. Makinwa, A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0. 15C (3σ) from − 55C to 125C. IEEE J. Solid State Circuits 48(1), 292–301 (2013)Google Scholar
  16. 16.
    C.-H. Weng et al., A CMOS thermistor-embedded continuous-time delta-sigma temperature sensor with a resolution FoM of 0.65pJC2. IEEE J. Solid State Circuits 50(11), 2491–2500 (2015)Google Scholar
  17. 17.
    A. Heidary et al., A BJT-based CMOS temperature sensor with a 3.6pJC2 resolution FoM, in Digest of Technical Papers ISSCC, Feb 2014, pp. 224–225Google Scholar
  18. 18.
    M. Tuthill, A switched-current, switched-capacitor temperature sensor in 0. 6 −μm CMOS. IEEE J. Solid State Circuits 33(7), 1117–1122 (1998)Google Scholar
  19. 19.
    A. Bakker, J.H. Huijsing, Micropower CMOS temperature sensor with digital output. IEEE J. Solid State Circuits 31(7), 933–937 (1996)CrossRefGoogle Scholar
  20. 20.
    M.A.P. Pertijs, A. Bakker, J.H. Huijsing, A high-accuracy temperature sensor with second-order curvature correction and digital bus interface, in Proceedings of ISCAS, vol. 1, May 2001, pp. 368–371Google Scholar
  21. 21.
    H. Lakdawala et al., A 1.05V 1.6mW 0. 45C 3σ-resolution \(\Delta \Sigma\)-based temperature sensor with parasitic-resistance compensation in 32nm Digital CMOS process. IEEE J. Solid State Circuits 44(12), 3621–3630 (2009)Google Scholar
  22. 22.
    J. Markus, J. Silva, G.C. Temes, Theory and applications of incremental \(\Sigma \Delta\) converters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 51(4), 678–690 (2004)Google Scholar
  23. 23.
    S.Z. Asl et al., A 1.55x0.85mm2 3ppm 1. 0μA 32.768kHz MEMS-based oscillator, in Digest of Technical Papers ISSCC, Feb 2014, pp. 226–227Google Scholar
  24. 24.
    P. Harpe et al., A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step, in Digest of Technical Papers ISSCC, Feb 2012, pp. 472–474Google Scholar
  25. 25.
    P. Harpe et al., A 0.7V 7-to-10 bit 0-to-2MS/s flexible SAR ADC for ultra low-power wireless sensor nodes, in Proceedings of ESSCIRC, Sept. 2012, pp. 373–376Google Scholar
  26. 26.
    N. Verma, A.P. Chandrakasan, An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J. Solid State Circuits 42(6), 1196–1205 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Hao Cheong et al., A 400-nW 19.5-fJ/conversion-step 8-ENOB 80-kS/s SAR ADC in 0. 18 −μm CMOS. IEEE Trans. Circuits Syst.-II 58(7), 407–411 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kamran Souri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.SiTime Corp.Santa ClaraUSA
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations