• Kamran Souri
  • Kofi A. A. Makinwa
Part of the Analog Circuits and Signal Processing book series (ACSP)


Temperature is the most often-measured environmental quantity [1]. This is because nearly all physical, chemical, mechanical, and biological systems exhibit some sort of temperature dependence. Temperature measurement and control are therefore critical tasks in many applications. Traditionally, temperature sensors have been implemented with discrete components such as resistance temperature detectors (RTDs), thermistors, or thermocouples. In the last three decades, integrated temperature sensors, particularly in CMOS technology, have become a promising alternative. A sustained research effort has been devoted to the development of compact, low-cost temperature sensors with co-integrated readout circuitry, thus providing temperature information in a digital format. Such smart temperature sensors (see Fig. 1.1) are conventional products nowadays [3–7].


  1. 1.
    National Semiconductor, National Semiconductor Temperature Sensor Handbook,
  2. 2.
    M.A.P. Pertijs, J.H. Huijsing, Precision Temperature Sensors in CMOS Technology (Springer, Dordrecht, 2006)Google Scholar
  3. 3.
    Texas Instruments Inc., LM75 data sheet, July 2009,
  4. 4.
    Maxim Int. Prod., DS1775 data sheet, May 2013,
  5. 5.
    Analog Devices Inc., ADT7301 data sheet, Aug. 2005,
  6. 6.
    NXP Semiconductors, PCT2075 data sheet, Oct. 2014, Google Scholar
  7. 7.
    NXP Semiconductors, PCT2202UK data sheet, Aug. 2015, Google Scholar
  8. 8.
    K. Sohraby, D. Minoli, T. Znati, Wireless Sensor Networks: Technology, Protocols, and Applications (Wiley, Hoboken, 2007), pp. 203–209. ISBN 978-0-471-74300-2CrossRefGoogle Scholar
  9. 9.
    Cymbet Corp.,
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa, J.H. Huijsing, Voltage calibration of smart temperature sensors, in Proceedings of IEEE Sensors, Oct. 2008, pp. 756–759Google Scholar
  15. 15.
    G.C.M. Meijer, A.J.M. Boomkamp, R.J. Duguesnoy, An accurate biomedical temperature transducer with on-chip microcomputer interfacing. IEEE J. Solid State Circuits 23(6), 1405–1410 (1998)CrossRefGoogle Scholar
  16. 16.
    A. Vaz et al., Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Trans. Circuits Syst. II 57(2), 95–99 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Opasjumruskit et al., Self-powered wireless temperature sensors exploit RFID technology. IEEE Pervasive Comput. 5, 54–61 (2006)CrossRefGoogle Scholar
  18. 18.
    Y.S. Lin, D. Sylvester, D. Blaauw, An ultra low power 1V, 220 nW temperature sensor for passive wireless applications, in Proceedings of CICC, Sept. 2008, pp. 507–510Google Scholar
  19. 19.
    B. Wang, M.K. Law, A. Bermark, H.C. Luong, A passive RFID tag embedded temperature sensor with improved process spreads immunity for a − 30C to 60C sensing range. IEEE Trans. Circuits Syst. 61(2), 337–346 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Krummenacher, H. Oguey, Smart temperature sensors in CMOS technology. Sens. Actuators A 22(1–3), 636–638 (1990)CrossRefGoogle Scholar
  21. 21.
    R.A. Bianchi et al., CMOS-compatible temperature sensor with digital output for wide temperature range applications. Microelectron. J. 31, 803–810 (2000)CrossRefGoogle Scholar
  22. 22.
    J. F. Creemer, F. Fruett, G.C. Meijer, P.J. French, The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J. 1(2), 98–108 (2001)CrossRefGoogle Scholar
  23. 23.
    F. Fruett, G.C. Meijer, The Piezojunction Effect in Silicon Integrated Circuits and Sensors (Kluwer Academic, Boston, 2002)Google Scholar
  24. 24.
    M.A.P. Pertijs et al., A CMOS temperature sensor with a 3σ inaccuracy of ± 0. 5C from − 50C to 120C. IEEE J. Solid State Circuits 40(2), 454–461 (2005)Google Scholar
  25. 25.
    M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS temperature sensor with a 3σ inaccuracy of ± 0. 1C from − 55C to 125C. IEEE J. Solid State Circuits 40(12), 2805–2815 (2005)Google Scholar
  26. 26.
    M. Shahmohammadi, K. Souri, K.A.A. Makinwa, A resistor-based temperature sensor for MEMS frequency references, in Proceedings of ESSCIRC, Sept. 2013, pp. 225–228Google Scholar
  27. 27.
    P. Park, K.A.A. Makinwa, D. Ruffieux, A resistor-based temperature sensor for a real time clock with ±2ppm frequency stability, in Proceedings of ESSCIRC, Sept. 2014, pp. 391–394Google Scholar
  28. 28.
    C.-H. Weng et al., A CMOS thermistor-embedded continuous-time delta-sigma temperature sensor with a resolution FoM of 0.65pJC2. IEEE J. Solid State Circuits 50(11), 2491–2500 (2015)Google Scholar
  29. 29.
    T. Veijola, Simple model for thermal spreading impedance, in Proceedings of BEC, Oct. 1996, pp. 73–76Google Scholar
  30. 30.
    Y.S. Touloukian et al., Thermophysical Properties of Matter, vol. 10 (Plenum, New York, 1998)Google Scholar
  31. 31.
    S.M. Kashmiri, K.A.A. Makinwa, Measuring the thermal diffusivity of CMOS chips, in Proceedings of IEEE Sensors, Oct. 2009, pp. 45–48Google Scholar
  32. 32.
    K.A.A. Makinwa, M.F. Snoeij, A CMOS temperature-to-frequency converter with an inaccuracy of ± 0. 5C (3σ) from − 40C to 105C. IEEE J. Solid State Circuits 41(12), 2992–2997 (2006)Google Scholar
  33. 33.
    C.P.L. van Vroonhoven, K.A.A. Makinwa, A CMOS temperature-to-digital converter with an inaccuracy of ± 0. 5C (3σ) from − 55C to 125C, in Digest of Technical Papers ISSCC, Feb 2008, pp. 576–577Google Scholar
  34. 34.
    C.P.L. van Vroonhoven, D. d’Aquino, K.A.A. Makinwa, A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ± 0. 2C (3σ) from − 55C to 125C, in Digest of Technical Papers ISSCC, Feb 2010, pp. 314–315Google Scholar
  35. 35.
    M. Terauchi, Selectable logarithmic/linear response active pixel sensor cell with reduced fixed-pattern-noise based on dynamic threshold MOS operation. Jpn. J. Appl. Phys. 44(4B), 2347–2350 (2005)CrossRefGoogle Scholar
  36. 36.
    K. Ueno et al., Ultralow-power smart temperature sensor with subthreshold CMOS circuits, in Proceedings of the International Symposium on Intelligent Signal Processing and Communications (ISPACS), Dec. 2006, pp. 546–549Google Scholar
  37. 37.
    P. Chen et al., A time-to-digital-converter-based CMOS smart temperature sensor. IEEE J. Solid State Circuits 40(8), 1642–1648 (2005)CrossRefGoogle Scholar
  38. 38.
    P. Chen et al., A time-domain SAR smart temperature sensor with a 3σ inaccuracy of − 0. 4C ∼ +0. 6C over a 0C to 90C range. IEEE J. Solid State Circuits 45(3), 600–609 (2010)Google Scholar
  39. 39.
    M. Terauchi, Temperature dependence of the subthreshold characteristics of dynamic threshold MOSFETs and its application to an absolute-temperature sensing scheme for low-voltage operation. Jpn. J. Appl. Phys. 46(7A), 4102–4104 (2007)CrossRefGoogle Scholar
  40. 40.
    A.J. Annema, Low-power bandgap references featuring DTMOS. IEEE J. Solid State Circuits 34(72), 949–955 (1999)CrossRefGoogle Scholar
  41. 41.
    B. Murmann, ADC Performance Survey 1997–2015, [Online]. Available:
  42. 42.
    K.A.A. Makinwa, Smart Temperature Sensor Survey, [Online]. Available:
  43. 43.
    A.L. Aita, M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0. 25C (3σ) from − 70C to 130C, in Digest of Technical Papers ISSCC, Feb 2009, pp. 342–343Google Scholar
  44. 44.
    M.K. Law, A. Bermak, A 405-nW CMOS temperature sensor based on linear MOS operation. IEEE Trans. Circuits Syst.-II 56, 891–895 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kamran Souri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.SiTime Corp.Santa ClaraUSA
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations