Skip to main content

Classic/Recommended Methods and Development of new Methods to Control Residues and Contaminants of Botanicals

  • Chapter
  • First Online:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal R, Behari JR. Screening for mercury in aqueous environmental samples and urine samples using thin layer chromatography. Water Environ Res. 2007;79:2457–63

    Article  CAS  Google Scholar 

  • Al-Hadithi N, Kössler P, Karlovsky P. Determination of Ochratoxin a in wheat and maize by solid bar microextraction with liquid chromatography and fluorescence detection. Toxins (Basel). 2015;7:3000–11

    Article  CAS  Google Scholar 

  • Alwakel SS. The effect of mycotoxins found in some herbal plants on biochemical parameters in blood of female albino mice. Pak J Biol Sci. 2009;13:637–42

    Article  Google Scholar 

  • Atar N, Eren T, Yola ML. A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice. Food Chem. 2015;184:7–11

    Article  CAS  Google Scholar 

  • Badea M, Romanca M, Drăghici C, Marty JL, Marques CVVCO, Mendes DR, Amarante OP Jr, Nunes GS. Multidisciplinary collaboration for environmental protection using biosensors. Detection of organophosphate insecticides in aqueous medium. J Brazil Chem Soc. 2006;17:807–11

    Article  CAS  Google Scholar 

  • Badea M, Rogozea L, Idomir M, Taus N, Balaban DP, Marty JL, Noguer T, Nunes GS. Biosensors for life sciences. In: Gungor BO, editor. Environmental technologies. New developments. Vienna: I-Tech Education and Publishing; 2007. p. 1–24. ISBN 978-3-902613-10-3.

    Google Scholar 

  • Badea M, Bala C, Rotariu L, Coman G, Gocan S, Marty JL. Methyl paraoxon detection using HPLC-UV and electric eel acetylcholinesterase-based biosensors. J Environ Prot Ecol. 2008a;9:763–72

    CAS  Google Scholar 

  • Badea M, Idomir M, Taus N, Popescu C, Scortea R, Coman G, Nunes GS, Marty JL. Biosensors for organophosphorus and carbamates pesticides detection from water samples. J Environ Protect Ecol. 2008b;9:33–42

    CAS  Google Scholar 

  • Badea M, Moga M, Taus N, Bigiu N, Cobzac SC. Heavy metals monitoring using TLC. J Environ Prot Ecol. 2009;10:1006–12

    CAS  Google Scholar 

  • Badea M, Florescu M, Coman G, editors. Bioanalytical methods for life sciences. Immunochemical methods. Applied bioanalytical methods in medicine, food control and environmental protection, Ed. Brasov: Universitatii Transilvania din Brasov; 2010.

    Google Scholar 

  • Badea M, Idomir M, Florescu M, Rogozea L. Electrochemical sensing in telemedicine (a review). In: Kalcher K, Metelka R, Švancara I, Vytřas K, editors. Sensing in electroanalysis, vol. 6. Pardubice, Czech Republic: University Press Centre; 2011. p. 149–56.

    Google Scholar 

  • Badea M, Floroian L, Restani P, Cobzac SC, Moga M. Ochratoxin a detection on antibody-immobilized on BSA-functionalized gold electrodes. PLoS One. 2016a;11:e0160021

    Article  CAS  Google Scholar 

  • Badea M, Floroian L, Restani P, Moga M. Simple surface functionalization strategy for immunosensing detection of aflatoxin B1. Int J Electrochem Sci. 2016b;11:6719–34

    Article  CAS  Google Scholar 

  • Barahona F, Gjelstad A, Pedersen-Bjergaard S, Rasmussen KE. Hollow fiber-liquid-phase microextraction of fungicides from orange juices. J Chromatogr A. 2010;1217:1989–94

    Article  CAS  Google Scholar 

  • Bedendo GC, Jardim ICSF, Carasek E. Multiresidue determination of pesticides in industrial and fresh orange juice by hollow fiber microporous membrane liquid-liquid extraction and detection by liquid chromatography–electrospray-tandem mass spectrometry. Talanta. 2012;88:573–80

    Article  CAS  Google Scholar 

  • Bernhardt K, Valenta H, Kersten S, Humpf HU, Dänicke S. Determination of T-2 toxin, HT-2 toxin, and three other type a trichothecenes in layer feed by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS)--comparison of two sample preparation methods. Mycotoxin Res. 2016;32:89–97

    Article  CAS  Google Scholar 

  • Berrada H, Fernández M, Ruiz MJ, Moltó JC, Manēs J, Font G. Surveillance of pesticide residues in fruits from Valencia during twenty months (2004/05). Food Control. 2010;21:36–44

    Article  CAS  Google Scholar 

  • Bhardwaj SK, Bhardwaj N, Mohanta GC, Kumar P, Sharma AL, Kim KH, Deep A. Immunosensing of atrazine with antibody-functionalized cu-MOF conducting thin films. ACS Appl Mater Interfaces. 2015;7:26124–30

    Article  CAS  Google Scholar 

  • Blasco C, Font G, Picó Y. Comparison of microextraction procedures to determine pesticides in oranges by liquid chromatography–mass spectrometry. J Chromatogr A. 2002;970:201–12

    Article  CAS  Google Scholar 

  • Blasco C, Font G, Pico Y. Multiple-stage mass spectrometric analysis of six pesticides in oranges by liquid chromatography–atmospheric pressure chemical ionization–ion trap mass spectrometry. J Chromatogr A. 2004;1043:231–8

    Article  CAS  Google Scholar 

  • Blasco C, Font G, Pico Y. Analysis of pesticides in fruits by pressurized liquid extraction and liquid chromatography–ion trap–triple stage mass spectrometry. J Chromatogr A. 2005;1098:37–43

    Article  CAS  Google Scholar 

  • Blasco C, Font G, Picó Y. Evaluation of 10 pesticide residues in oranges and tangerines from Valencia (Spain). Food Control. 2006;17:841–6

    Article  CAS  Google Scholar 

  • Bueno D, Valdez LF, Gutiérrez Salgado JM, Marty JL, Muñoz R. Colorimetric analysis of Ochratoxin a in beverage samples. Sensors (Basel). 2016;16:1888. 10.3390/s16111888.

    Article  Google Scholar 

  • Buzea V, Florescu M, Badea M. Detection of heavy metals in biological samples through anodic stripping voltammetry. In: Kalcher K, Metelka R, Švancara I, Vytřas K, editors. Sensing in electroanalysis, vol. 7. Pardubice, Czech Republic: University Press Centre; 2012. p. 57–69.

    Google Scholar 

  • Campone L, Piccinelli AL, Celano R, Pagano I, Russo M, Rastrelli L. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry. J Chromatogr A. 2016;1428:212–9

    Article  CAS  Google Scholar 

  • Cervera MI, Portolés T, Pitarch E, Beltrán J, Hernández F. Application of gas chromatography time-of-flight mass spectrometry for target and non-target analysis of pesticide residues in fruits and vegetables. J Chromatogr A. 2012;1244:168–77

    Article  CAS  Google Scholar 

  • Chen L, Shangguan L-M, Wu Y-N, Xu L-J, Fu F-F. Study on the residue and degradation of fluorine-containing pesticides in oolong tea by using gas chromatography–mass spectrometry. Food Control. 2012;25:433–40

    Article  CAS  Google Scholar 

  • Chen Y, Chen Q, Han M, Zhou J, Gong L, Niu Y, Zhang Y, He L, Zhang L. Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chem. 2016;213:478–84

    Article  CAS  Google Scholar 

  • Chen F, Luan C, Wang L, Wang S, Shao L. Simultaneous determination of six mycotoxins in peanut by high-performance liquid chromatography with a fluorescence detector. J Sci Food Agric. 2017;97:1805–10

    Article  CAS  Google Scholar 

  • Cortes-Aguado S, Sánchez-Morito N, Arrebola FJ, Garrido Frenich A, Martinez Vidal JL. Fast screening of pesticide residues in fruit juice by solid-phase microextraction and gas chromatography–mass spectrometry. Food Chem. 2008;107:1314–25

    Article  CAS  Google Scholar 

  • Dasgupta S, Banerjee K, Utture S, Kusan P, Wagh S, Dhumai K, Kolekar S, Adsule PG. Extraction of pesticides, dioxin-like PCBs and PAHs in water based commodities using liquid-liquid microextraction and analysis by gas chromatography–mass spectrometry. J Chromatogr A. 2011;1218:6780–91

    Article  CAS  Google Scholar 

  • David M, Badea M, Florescu M. Performance evaluation of acetylcholinesterase - based biosensors for heavy metal detection. In: Kalcher K, Metelka R, Švancara I, Vytřas K, editors. Sensing in electroanalysis, vol. 6. Pardubice, Czech Republic: University Press Centre; 2011. p. 337–46.

    Google Scholar 

  • Efuntoye MO. Mycotoxins of fungal strains from stored herbal plants and mycotoxin contents of Nigeria crude herbal drugs. Mycopathologia. 1999;147:43–8

    Article  CAS  Google Scholar 

  • Fahimi-Kashani N, Hormozi-Nezhad MR. Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Anal Chem. 2016;88:8099–106

    Article  CAS  Google Scholar 

  • Fan H, Smuts J, Walsh P, Harrison D, Schug KA. Gas chromatography-vacuum ultraviolet spectroscopy for multiclass pesticide identification. J Chromatogr A. 2015;1389:120–7

    Article  CAS  Google Scholar 

  • Fang L, Chen H, Ying X, Lin J-M. Micro-plate chemiluminescence enzyme immunoassay for aflatoxin B1 in agricultural products. Talanta. 2011;84:216–22

    Article  CAS  Google Scholar 

  • Farcas A, Valceanu Matei A, Florian C, Badea M, Coman G. Health effects associated with acute and chronic exposure to pesticides. In: environmental security assessment and management of obsolete pesticides in Southeast Europe. New York: Springer; 2013. p. 103–10

    Google Scholar 

  • Ferrer I, García-Reyes JF, Mezcua M, Thurman EMA, Fernández-Alba AR. Multi-residue pesticide analysis in fruits and vegetables by liquid chromatography–time-of-flight mass spectrometry. J Chromatogr A. 2005;1082:81–90

    Article  CAS  Google Scholar 

  • Ferrer C, Lozano A, Agüera A, Girón J, Fernández-Alba AR. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J Chromatogr A. 2011a;1218:7634–9

    Article  CAS  Google Scholar 

  • Ferrer C, Martínez-Bueno MJ, Lozano A, Fernández-Alba AR. Pesticide residue analysis of fruit juices by LC–MS/MS direct injection. One year pilot survey. Talanta. 2011b;83:1552–61

    Article  CAS  Google Scholar 

  • Fiedler H, Cheung CK, Wong MH. PCDD/PCDF, chlorinated pesticides and PAH in Chinese teas. Chemosphere. 2002;46:1429–33

    Article  CAS  Google Scholar 

  • Florescu M, Badea M, Coman G, Marty JL, Mitrica M. Screen printed electrodes used for detection of heavy metals. Bullet Transilvania Univ Brasov. 2009;16:49–54

    Google Scholar 

  • Garcia-Alvarez A, Egan B, de Klein S, Dima L, Maggi FM, Isoniemi M, Ribas-Barba L, Raats MM, Meissner EM, Badea M, Bruno F, Salmenhaara M, Milà-Villarroel R, Knaze V, Hodgkins C, Marculescu A, Uusitalo L, Restani P, Serra-Majem L. Usage of plant food supplements across six European countries: findings from the plant LIBRA consumer survey. PLoS One. 2014;9:e92265

    Article  CAS  Google Scholar 

  • Garrido Frenich A, Martínez Vidal JL, Fernández Moreno JL, Romero-González R. Compensation for matrix effects in gas chromatography–tandem mass spectrometry using a single point standard addition. J Chromatogr A. 2009;1216:4798–808

    Article  CAS  Google Scholar 

  • Granby K, Andersen JH, Christensen HB. Analysis of pesticides in fruit, vegetables and cereals using methanolic extraction and detection by liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 2004;520:165–76

    Article  CAS  Google Scholar 

  • Guan H, Brewer WE, Garris ST, Morgan SL. Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry. J Chromatogr A. 2010;1217:1867–74

    Article  CAS  Google Scholar 

  • Habibipour R, Tamandegani PR, Farmany A. Monitoring of aflatoxin G1, B1, G2, and B2 occurrence in some samples of walnut. Environ Monit Assess. 2016;188:669

    Article  CAS  Google Scholar 

  • Hernández F, Pozo OJ, Sancho JV, Bijlsma L, Barreda M, Pitarch E. Multiresidue liquid chromatography tandem mass spectrometry determination of 52 non gas chromatography-amenable pesticides and metabolites in different food commodities. J Chromatogr A. 2006;1109:242–52

    Article  CAS  Google Scholar 

  • Hiemstra M, de Kok A. Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2007;1154:3–25

    Article  CAS  Google Scholar 

  • Hodnik V, Anderluh G. Review toxin detection by surface plasmon resonance. Sensors. 2009;9:1339–54

    Article  CAS  Google Scholar 

  • Homaei A. Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection. Ecotoxicol Environ Saf. 2017;136:1–7

    Article  CAS  Google Scholar 

  • Húškovaá R, Matisová E, Hrouzkovaá S, Švorc L. Analysis of pesticide residues by fast gas chromatography in combination with negative chemical ionization mass spectrometry. J Chromatogr A. 2009;1216:6326–34

    Article  CAS  Google Scholar 

  • Iqbal J, Asghar MA, Ahmed A, Khan MA, Jamil K. Aflatoxins contamination in Pakistani brown rice: a comparison of TLC, HPLC, LC-MS/MS and ELISA techniques. Toxicol Mech Methods. 2014;24:544–51

    Article  CAS  Google Scholar 

  • Ito Y, Goto T, Yamada S, Ohno T, Matsumoto H, Oka H. Rapid determination of carbamate pesticides in food using dual counter-current chromatography directly interfaced with mass spectrometry. J Chromatogr A. 2008;1187:53–7

    Article  CAS  Google Scholar 

  • Jamshidi B, Mohajerani E, Jamshidi J, Minaei S, Sharifi A. Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32:857–63

    Article  CAS  Google Scholar 

  • Ji J, Gu W, Sun C, Sun J, Jiang H, Zhang Y, Sun X. A novel recombinant cell fluorescence biosensor based on toxicity of pathway for rapid and simple evaluation of DON and ZEN. Sci Rep. 2016;6:31270

    Article  CAS  Google Scholar 

  • Joshi S, Annida RM, Zuilhof H, van Beek TA, Nielen MW. Analysis of mycotoxins in beer using a portable nanostructured imaging surface plasmon resonance biosensor. J Agric Food Chem. 2016a;64:8263–71

    Article  CAS  Google Scholar 

  • Joshi S, Segarra-Fas A, Peters J, Zuilhof H, van Beek TA, Nielen MW. Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst. 2016b;141:1307–18. 10.1039/c5an02512e.

    Article  CAS  Google Scholar 

  • Karczmarczyk A, Dubiak-Szepietowska M, Vorobii M, Rodriguez-Emmenegger C, Dostálek J, Feller KH. Sensitive and rapid detection of aflatoxin M1 in milk utilizing enhanced SPR and p(HEMA) brushes. Biosens Bioelectron. 2016;81:159–65

    Article  CAS  Google Scholar 

  • Kmellár B, Fodor P, Pareja L, Ferrer C, Martinez-Uroz MA, Valverde A, Fernandez-Alba AR. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2008;1215:37–50

    Article  CAS  Google Scholar 

  • Koesukwiwat U, Lehotay SJ, Miao S, Leepipatpiboon N. High throughput analysis of 150 pesticides in fruits and vegetables using QuEChERS and low-pressure gas chromatography-time-of-flight mass spectrometry. J Chromatogr A. 2010;1217:6692–703

    Article  CAS  Google Scholar 

  • Koesukwiwat U, Lehotay SJ, Leepipatpiboon N. Fast, low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables. J Chromatogr A. 2011;1218:7039–50

    Article  CAS  Google Scholar 

  • Kristenson EM, Haverkate EGJ, Slooten CJ, Ramos L, Vreuls RJ, Brinkman UA. Miniaturized automated matrix solid-phase dispersion extraction of pesticides in fruit followed by gas chromatographic–mass spectrometric analysis. J Chromatogr A. 2001;917:277–86

    Article  CAS  Google Scholar 

  • Kwaśniewska K, Gadzała-Kopciuch R, Cendrowski K. Analytical procedure for the determination of zearalenone in environmental and biological samples. Crit Rev Anal Chem. 2015;45:119–30

    Article  CAS  Google Scholar 

  • Lai W, Fung DYC, Xu Y, Liu R, Xiong Y. Development of a colloidal gold strip for rapid detection of ochratoxin a with mimotope peptide. Food Control. 2009;20:791–5

    Article  CAS  Google Scholar 

  • Lan M, Guo Y, Zhao Y, Liu Y, Gui W, Zhu G. Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement. Anal Chim Acta. 2016;938:146–55

    Article  CAS  Google Scholar 

  • Leandro CC, Hancock P, Fussell RJ, Keely BJ. Ultra-performance liquid chromatography for the determination of pesticide residues in foods by tandem quadrupole mass spectrometry with polarity switching. J Chromatogr A. 2007;1144:161–9

    Article  CAS  Google Scholar 

  • Lehotay SJ, Valverde-García A. Evaluation of different solid-phase traps for automated collection and clean-up in the analysis of multiple pesticides in fruits and vegetables after supercritical fluid extraction. J Chromatogr A. 1997;765:69–84

    Article  CAS  Google Scholar 

  • Lesueur C, Knittl P, Gartner M, Mentler A, Fuerhacker M. Analysis of 140 pesticides from conventional farming foodstuff samples after extraction with the modified QuECheRS method. Food Control. 2008;19:906–14

    Article  CAS  Google Scholar 

  • Li Y, Hou C, Lei J, Deng B, Huang J, Yang M. Detection of organophosphorus pesticides with colorimetry and computer image analysis. Anal Sci. 2016a;32:719–24

    Article  CAS  Google Scholar 

  • Li M, Kong W, Li Y, Liu H, Liu Q, Dou X, Ou-Yang Z, Yang M. High-throughput determination of multi-mycotoxins in Chinese yam and related products by ultra fast liquid chromatography coupled with tandem mass spectrometry after one-step extraction. J Chromatogr B Analyt Technol Biomed Life Sci. 2016b;1022:118–25

    Article  CAS  Google Scholar 

  • Liu W, Hu Y, Zhao J, Xu Y, Guan Y. Physically incorporated extraction phase of solid-phase microextraction by sol-gel technology. J Chromatogr A. 2006a;1102:37–43

    Article  CAS  Google Scholar 

  • Liu L, Yuki H, Qin Y, Zhou H, Lin J. Rapid analysis of multiresidual pesticides in agricultural products by gas chromatography-mass spectrometry. Chin J Anal Chem. 2006b;34:783–6

    Article  CAS  Google Scholar 

  • Liu L, Hashi Y, Qin Y, Zhou HX, Lin JM. Development of automated online gel permeation chromatography–gas chromatograph mass spectrometry for measuring multiresidual pesticides in agricultural products. J Chromatogr B. 2007;845:61–8

    Article  CAS  Google Scholar 

  • Marino A, Nostro A, Fiorentino C. Ochratoxin a production by aspergillus westerdijkiae in orange fruit and juice. Int J Food Microbiol. 2009;132:185–9

    Article  CAS  Google Scholar 

  • McKeague M, Velu R, Hill K, Bardóczy V, Mészáros T, DeRosa MC. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of Ochratoxin a. Toxins. 2014;6:2435–52

    Article  CAS  Google Scholar 

  • Mehta J, Bhardwaj SK, Bhardwaj N, Paul AK, Kumar P, Kim KH, Deep A. Progress in the biosensing techniques for trace-level heavy metals. Biotechnol Adv. 2016;34:47–60

    Article  CAS  Google Scholar 

  • Meneely JP, Elliott CT. Rapid surface plasmon resonance immunoassays for the determination of mycotoxins in cereals and cereal-based food products, special issue: rapid methods for mycotoxin detection. World Mycotoxin J. 2014;7:491–505. 10.3920/WMJ2013.1673.

    Article  CAS  Google Scholar 

  • Mercade JV, Montoya A. A monoclonal antibody-based ELISA for the analysis of azinphos-methyl in fruit juices. Anal Chim Acta. 1997;347:95–101

    Article  Google Scholar 

  • Michel C, Ouerd A, Battaglia-Brunet F, Guigues N, Grasa JP, Bruschi M, Ignatiadis I. Cr(VI) quantification using an amperometric enzyme-based sensor: interference and physical and chemical factors controlling the biosensor response in ground waters. Biosens Bioelectron. 2006;22:285–90

    Article  CAS  Google Scholar 

  • Molchanova K, Badea M, Gaceu L, Nianikova G. Environmental factors influencing the activity of acetylcholinesterase. J Eco Agri Tourism. 2016;12:21–8

    Google Scholar 

  • Multari RA, Cremers DA, Scott T, Kendrick P. Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS). J Agric Food Chem. 2013;61:2348–57

    Article  CAS  Google Scholar 

  • Nguyen TD, Lee MH, Lee GH. Rapid determination of 95 pesticides in soybean oil using liquid–liquid extraction followed by centrifugation, freezing and dispersive solid phase extraction as cleanup steps and gas chromatography with mass spectrometric detection. Microchem J. 2010;95:113–9

    Article  CAS  Google Scholar 

  • Nunes GS, Lins JAP, Silva FGS, Araujo LC, Silva FEPS, Mendonça CD, Badea M, Hayat A, Marty J-L. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem. Chemosphere. 2014;111:623–30

    Article  CAS  Google Scholar 

  • Pal A, Debopam A, Debjani S, Dipika R, Tarun KD. In situ sample cleanup during immunoassay: a simple method for rapid detection of aflatoxin B1 in food samples. J Food Prot. 2005;6:2169–77

    Article  Google Scholar 

  • Pietri A, Fortunati P, Mulazzi A, Bertuzzi T. Enzyme-assisted extraction for the HPLC determination of aflatoxin M1 in cheese. Food Chem. 2016;192:235–41

    Article  CAS  Google Scholar 

  • Pizzutti IR, de Kok A, Zanella R, Adaime MB, Hiemstra M, Wickert C, Prestes OD. Method validation for the analysis of 169 pesticides in soya grain, without clean up, by liquid chromatography–tandem mass spectrometry using positive and negative electrospray ionization. J Chromatogr A. 2007;1142:123–36

    Article  CAS  Google Scholar 

  • Pizzutti IR, de Kok A, Hiemstra M, Wickert C, Prestes OD. Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2009;1216:4539–52

    Article  CAS  Google Scholar 

  • Pogaanik L, Franko M. Determination of organophosphate and carbamate pesticides in spiked samples of tap water and fruit juices by a biosensor with photothermal detection. Biosens Bioelectron. 1999;14:569–78

    Article  Google Scholar 

  • Pozo OJ, Marin JM, Sancho JV, Henández F. Determination of abamectin and azadirachtin residues in orange samples by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A. 2003;992:133–40

    Article  CAS  Google Scholar 

  • Ramos JJ, González MJ, Ramos L. Comparison of gas chromatography-based approaches after fast miniaturised sample preparation for the monitoring of selected pesticide classes in fruits. J Chromatogr A. 2009;1216:7307–13

    Article  CAS  Google Scholar 

  • Ravelo-Perez LM, Hernandez-Borges J, Rodriguez-Delgado MA. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. J Chromatogr A. 2008;1211:33–42

    Article  CAS  Google Scholar 

  • Rhouati A, Catanante G, Nunes G, Hayat A, Marty JL. Label-free aptasensors for the detection of mycotoxins. Sensors (Basel). 2016;16:2178

    Article  Google Scholar 

  • Romero-Gonzàlez R, Frenich AG, Vidal JLM. Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry. Talanta. 2008;76:211–25

    Article  CAS  Google Scholar 

  • Rubio L, Ortiz MC, Sarabia LA. Identification and quantification of carbamate pesticides in dried lime tree flowers by means of excitation-emission molecular fluorescence and parallel factor analysis when quenching effect exists. Anal Chim Acta. 2014;820:9–22

    Article  CAS  Google Scholar 

  • Saidur MR, Aziz AR, Basirun WJ. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron. 2017;90:125–39

    Article  CAS  Google Scholar 

  • Saini SS, Kaur A. Molecularly imprinted polymers for the detection of food toxins: a minireview. Adv Nanoparticles. 2013;02:60–5

    Article  CAS  Google Scholar 

  • Sanders M, McPartlin D, Moran K, Guo Y, Eeckhout M, O'Kennedy R, De Saeger S, Maragos C. Comparison of enzyme-linked immunosorbent assay, surface plasmon resonance and biolayer interferometry for screening of deoxynivalenol in wheat and wheat dust. Toxins (Basel). 2016;8:103

    Article  CAS  Google Scholar 

  • Sannino A, Bolzoni L, Bandini M. Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables. J Chromatogr A. 2004;1036:161–9

    Article  CAS  Google Scholar 

  • Santos L, Marín S, Sanchis V, Ramos AJ. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J Sci Food Agric. 2009;89:1802–7

    Article  CAS  Google Scholar 

  • Sanzini E, Badea M, Santos AD, Restani P, Sievers H. Quality control of plant food supplements. Food Funct. 2011;2:740–6

    Article  CAS  Google Scholar 

  • Schurek J, Portoles T, Hajslova J, Riddellova K, Hernández F. Application of head-space solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the determination of multiple pesticide residues in tea samples. Anal Chim Acta. 2008;611:163–72

    Article  CAS  Google Scholar 

  • Sharif Z, Man YBC, NSA H, Keat CC. Determination of organochlorine and pyrethroid pesticides in fruit and vegetables using solid phase extraction clean-up cartridges. J Chromatogr A. 2006;1127:254–61

    Article  CAS  Google Scholar 

  • Shi H, Sheng E, Feng L, Zhou L, Hua X, Wang M. Simultaneous detection of imidacloprid and parathion by the dual-labeled time-resolved fluoroimmunoassay. Environ Sci Pollut Res Int. 2015;22:14882–90

    Article  CAS  Google Scholar 

  • Sojo LE, Brocke A, Fillion J, Price SM. Application of activated carbon membranes for on-line cleanup of vegetable and fruit extracts in the determination of pesticide multiresidues by gas chromatography with mass selective detection. J Chromatogr A. 1997;788:141–54

    Article  CAS  Google Scholar 

  • Soler C, Manes J, Pico Y. Comparison of liquid chromatography using triple quadrupole and quadrupole ion trap mass analyzers to determine pesticide residues in oranges. J Chromatogr A. 2005;1067:115–25

    Article  CAS  Google Scholar 

  • Taylor MJ, Hunter K, Hunter KB, Lindsay D, Le Bouhellec S. Multi-residue method for rapid screening and confirmation of pesticides in crude extracts of fruits and vegetables using isocratic liquid chromatography with electrospray tandem mass spectrometry. J Chromatogr A. 2002;982:225–36

    Article  CAS  Google Scholar 

  • Torres CM, Pico Y, Man EJ. Comparison of octadecylsilica and graphitized carbon black as materials for solid-phase extraction of fungicide and insecticide residues from fruit and vegetables. J Chromatogr A. 1997;778:127–37

    Article  CAS  Google Scholar 

  • Urraca JL, Huertas-Pérez JF, Cazorla GA, Gracia-Mora J, García-Campaña AM, Moreno-Bondi MC. Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection. Anal Bioanal Chem. 2016;408:3033–42

    Article  CAS  Google Scholar 

  • Uzer A, Ercag E, Parlar H, Filik H. Spectrophotometric determination of 4,6-dinitro-o-cresol (DNOC) in soil and lemon juice (J). Anal Chim Acta. 2006;580:83–90

    Article  CAS  Google Scholar 

  • Valenzuela AI, Lorenzini R, Redondo MJ, Font G. Matrix solid-phase dispersion microextraction and determination by high-performance liquid chromatography with UV detection of pesticide residues in citrus fruit. J Chromatogr A. 1999;839:101–7

    Article  CAS  Google Scholar 

  • Vermeeren V, Wenmackers S, Wagner P, Michiels L. DNA sensors with diamond as a promising alternative transducer material. Sensors. 2009;9:5600–36

    Article  CAS  Google Scholar 

  • Wang G, Huang H, Zhang X, Wang L. Electrically contacted enzyme based on dual hairpin DNA structure and its application for amplified detection of Hg2+. Biosens Bioelectron. 2012;35:108–14

    Article  CAS  Google Scholar 

  • Watanabe E, Yoshimura Y, Yuasa Y, Nakazawa H. Immunoaffinity column clean-up for the determination of imazalil in citrus fruits. Anal Chim Acta. 2001;433:199–206

    Article  CAS  Google Scholar 

  • Watanabe E, Seike N, Motoki Y, Inao K, Otani T. Potential application of immunoassays for simple, rapid and quantitative detections of phytoavailable neonicotinoid insecticides in cropland soils. Ecotoxicol Environ Saf. 2016;132:288–94

    Article  CAS  Google Scholar 

  • WHO. WHO Guidelines for assessing quqlity of herbal medicines with reference to contaminants and residues. WHO 2007. http://apps.who.int/medicinedocs/documents/s14878e/s14878e.pdf.

  • Wu Y, Sun Y, Xiao F, Wu Z, Yu R. Sensitive inkjet printing paper-based colormetric strips for acetylcholinesterase inhibitors with indoxyl acetate substrate. Talanta. 2017;162:174–9

    Article  CAS  Google Scholar 

  • Xing Y, Meng W, Sun W, Li D, Yu Z, Tong L, Zhao Y. 2016. Simultaneous qualitative and quantitative analysis of 21 mycotoxins in radix Paeoniae Alba by ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry and QuEChERS for sample preparation. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1031:202–13

    Article  CAS  Google Scholar 

  • Xu L, Zhang Z, Zhang Q, Li P. Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers. Toxins (Basel). 2016;8:239

    Article  CAS  Google Scholar 

  • Yoshinari T, Ohnishi T, Terajima J. Evaluation of four commercial kits based on immunochromatography for screening aflatoxin M1 in milk. Food Hyg Saf Sci. 2016;57:76–9

    Article  Google Scholar 

  • Yu J, Wu C, Xing J. Development of new solid-phase microextraction fibers by sol–gel technology for the determination of organophosphorus pesticide multiresidues in food. J Chromatogr A. 2004;1036:101–11

    Article  CAS  Google Scholar 

  • Yu FY, Vdovenko MM, Wang JJ, Sakharov IY. Comparison of enzyme-linked immunosorbent assays with chemiluminescent and colorimetric detection for the determination of ochratoxin a in food. J Agric Food Chem. 2011;59:809–13

    Article  CAS  Google Scholar 

  • Zeiner M, Cindric J. Review – trace determination of potentially toxic elements in (medicinal) plant materials. Anal Methods. 2017;9:1550–74

    Article  CAS  Google Scholar 

  • Zhan S, Wu Y, Wang L, Zhan X, Zhou P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens Bioelectron. 2016;86:353–68

    Article  CAS  Google Scholar 

  • Zhang Z, Hu X, Zhang Q, Li P. Determination for multiple mycotoxins in agricultural products using HPLC-MS/MS via a multiple antibody immunoaffinity column. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1021:145–52

    Article  CAS  Google Scholar 

  • Zhao E, Han L, Jiang S, Wang Q, Zhou Z. Application of a single-drop microextraction for the analysis of organophosphorus pesticides in juice. J Chromatogr A. 2006;1114:269–73

    Article  CAS  Google Scholar 

  • Zhao P, Wang L, Zhou L, Zhang L, Kang S, Pan C. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J Chromatogr A. 2012;1225:17–25

    Article  CAS  Google Scholar 

  • Zhao H, Chen X, Shen C, Qu B. Determination of 16 mycotoxins in vegetable oils using a QuEChERS method combined with high-performance liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017;34:255–64

    Article  CAS  Google Scholar 

  • Zhu Z, Feng M, Zuo L, Zhu Z, Wang F, Chen L, Li J, Shan G, Luo SZ. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin a in wine and peanut oil. Biosens Bioelectron. 2015;65:320–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Badea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Badea, M. et al. (2018). Classic/Recommended Methods and Development of new Methods to Control Residues and Contaminants of Botanicals. In: Restani, P. (eds) Food Supplements Containing Botanicals: Benefits, Side Effects and Regulatory Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-62229-3_11

Download citation

Publish with us

Policies and ethics