Advertisement

Stochastic Differential Equations

  • Paolo Baldi
Chapter
Part of the Universitext book series (UTX)

Abstract

In this chapter we introduce the notion of a Stochastic Differential Equation. In Sects. 9.4, 9.5, 9.6 we investigate existence and uniqueness. In Sect. 9.8 we obtain some L p estimates that will allow us to specify the regularity of the paths and the dependence from the initial conditions. In the last sections we shall see that the solution of a stochastic differential equation is a Markov process and even a diffusion associated to a differential operator that we shall specify.

References

  1. Doss, H. (1977). Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré, B, 13:99–126.zbMATHMathSciNetGoogle Scholar
  2. Friedman, A. (1975). Stochastic Differential Equations and Applications, I and II. Academic Press, New York.zbMATHGoogle Scholar
  3. Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. North Holland.Google Scholar
  4. Priouret, P. (1974). Diffusions et équations différentielles stochastiques. In Ecole d’été de Probabilités de St. Flour III-1973, Lect. Notes Math. 390. Springer.Google Scholar
  5. Revuz, D. and Yor, M. (1999). Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition.Google Scholar
  6. Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov processes, and martingales. Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge. Itô calculus, Reprint of the second (1994) edition.Google Scholar
  7. Stroock, D. and Varadhan, S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematisches Wissenschaften 233. Springer, Berlin, Heidelberg, New York.Google Scholar
  8. Sussmann, H. (1978). On the gap between deterministic and stochastic differential equations. Ann. Probab., 6:19–41.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paolo Baldi
    • 1
  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations