Skip to main content

Productivity and Carbon Dynamics in Mangrove Wetlands

  • Chapter
  • First Online:
Mangrove Ecosystems: A Global Biogeographic Perspective

Abstract

This chapter focuses on the net primary productivity and carbon (C) dynamics of mangrove wetlands as related to the potential to sequester atmospheric C in above- and belowground biomass and in the soil. We discuss the large variation in ecosystem properties across different coastal environmental settings and pay particular attention to global patterns of these ecosystem processes comparing the Atlantic-East-Pacific and Indo-West-Pacific biogeographic regions. Deltaic coasts have higher aboveground biomass (AGB) compared to other continental settings, but the highest average AGB was found in high oceanic islands. The global average rates of litter fall (NPPL) and (NPPW) wood production are about 6 t ha−1 yr−1 for aboveground net primary productivity (NPPA) of about 12 t ha−1 yr−1. The relative contribution of belowground allocation to soil C storage and wood production to total net primary productivity (NPPT) in mangrove wetlands has significant implications to net C exchange in these coastal forested wetlands. Examples are given to demonstrate that net ecosystem production (NEP) and net ecosystem carbon exchange for mangrove wetlands have implications to the debate on how coastal ecosystems influence the global C budget. Wood production is about 600 g dry mass m−2 yr−1 or about 300 gC m−2 yr−1. The average C sequestration in mangroves soils (∆S org) is about 224 gC m−2 yr−1. The sum of these two measures (NPPW + ∆S org) is an estimate of NEP at about 525 gC m−2 yr−1. A general conclusion based on these different approaches, and reviewing the existing global literature, is that NEP accumulates about 500 gC m−2 yr−1, equally distributed between wood production and soil C accumulation. The importance of above and belowground contributions to global estimates of C sequestration above- and belowground reinforces the need for a better understanding of biomass allocation in these systems. The net tidal exchange of inorganic and organic carbon is about 400 gC m−2 yr−1 with nearly equal distribution in these forms of carbon to coastal waters. It is not clear how the fate of this material may influence net carbon exchange in the coastal zone, which is a very active area of research. We also suggest that more information is needed on how the disturbance of mangrove wetlands, including their recovery, may influence net carbon flux in the coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adame MF, Lovelock CE (2011) Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663(1):23–50

    Article  CAS  Google Scholar 

  • Allen JA, Ewel KC, Keeland BD, Tara T, Smith TJ (2000) Downed wood in Micronesian mangrove forests. Wetlands 20(1):169–176

    Article  Google Scholar 

  • Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK (2014) IPCC fifth assessment synthesis report-climate change 2014 synthesis report

    Google Scholar 

  • Alongi D, Pfitzner J, Trott L, Tirendi F, Dixon P, Klumpp D (2005) Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuar Coast Shelf Sci 63(4):605–618

    Article  CAS  Google Scholar 

  • Alongi D, Wattayakorn G, Pfitzner J, Tirendi F, Zagorskis I, Brunskill G, Davidson A, Clough B (2001) Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Mar Geol 179(1):85–103

    Article  CAS  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29(3):331–349

    Article  Google Scholar 

  • Alongi DM (2009) The energetics of mangrove forests. Springer, Dordrecht/London

    Google Scholar 

  • Alongi DM (2011) Patterns of mangrove wood and litter production within a beach ridge-fringing reef embayment, northern great barrier reef coast. Estuar Coasts 34(1):32–44. doi:10.1007/s12237-010-9289-y

    Article  CAS  Google Scholar 

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219

    Article  Google Scholar 

  • Alongi DM, Boto KG, Tirendi F (1989) Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments. Mar Ecol Prog Ser 56:133–144

    Article  Google Scholar 

  • Alongi DM, Christoffersen P, Tirendi F (1993) The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. J Exp Mar Biol Ecol 171:201–223

    Article  Google Scholar 

  • Amarasinghe MD, Balasubramaniam S (1992) Net primary productivity of two mangrove forest stands on the northwestern coast of Sri Lanka. Hydrobiologia 247(1–3):37–47

    Article  Google Scholar 

  • Andersen FO, Kristensen E (1992) The importance of benthic macrofauna in decomposition of microalgae in a coastal marine sediment. Limnol Oceanogr 37(7):1392–1403

    Article  Google Scholar 

  • Araújo J Jr, Otero X, Marques A, Nóbrega G, Silva J, Ferreira T (2012) Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani. Geo-Mar Lett 32(4):289–300

    Article  CAS  Google Scholar 

  • Armentano T, Menges E (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J Ecol 74:755–774

    Article  CAS  Google Scholar 

  • Baldocchi D (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56(1):1–26. doi:http://dx.doi.org/10.1071/BT07151

    Article  CAS  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9(4):479–492

    Article  Google Scholar 

  • Barr JG, Engel V, Fuentes JD, Zieman JC, O’Halloran TL, Smith TJ, Anderson GH (2010) Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J Geophys Res Biogeo 115, G02020, doi:10.1029/2009JG001186

  • Borges AV, Djenidi S, Lacroix G, Theate J, Delille B, Frankignoulle M (2003) Atmospheric CO2 flux from mangrove surrounding waters. Geophys Res Lett 30(11):12-11–12-14

    Article  CAS  Google Scholar 

  • Bosire JO, Dahdouh-Guebas F, Kairo JG, Wartel S, Kazungu J, Koedam N (2006) Success rates of recruited tree species and their contribution to the structural development of reforested mangrove stands. Mar Ecol Prog Ser 325:85–91. doi:10.3354/meps325085

    Article  Google Scholar 

  • Bosire JO, Dahdouh-Guebas F, Kairo JG, ZKazungu J, Dehairs F, Koedam N (2005) Litter degradation and CN dynamics in reforested mangrove plantations at Gazi Bay, Kenya. Biol Conserv 126:287–295

    Article  Google Scholar 

  • Boto KG, Bunt JS (1981) Tidal export of particulate organic matter from a northern Australian mangrove system. Estuar Coast Shelf Sci 13:247–255

    Article  Google Scholar 

  • Boto KG, Wellington JT (1988) Seasonal variations in concentrations and fluxes of dissolved organic and inorganic materials in a tropical, tidally-dominated, mangrove waterway. Mar Ecol Prog Ser 50:151–160

    Article  CAS  Google Scholar 

  • Bouillon S, Borges AV, Castaneda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH, Smith TJ, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22(2). doi:10.1029/2007gb003052

  • Bouillon S, Koedam N, Baeyens W, Satyanarayana B, Dehairs F (2004a) Selectivity of subtidal benthis invertebrate communities for local microalgal production in an estuarine mangrove ecosystem during the post-monsoon period. J Sea Res 51(2):133–144

    Article  Google Scholar 

  • Bouillon S, Koedam N, Raman AV, Dehairs F (2002a) Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia 130:441–448

    Article  CAS  PubMed  Google Scholar 

  • Bouillon S, Middelburg JJ, Dehairs F, Borges AV, Abril G, Flindt MR, Ulomi S, Kristensen E (2007) Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosci Discuss 4(1):317–348

    Article  Google Scholar 

  • Bouillon S, Moens T, Overmeer I, Koedam N, Dehairs F (2004b) Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Mar Ecol Prog Ser 278:77–88

    Article  CAS  Google Scholar 

  • Bouillon S, Raman A, Dauby P, Dehairs F (2002b) Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar Coast Shelf Sci 54(5):901–913

    Article  CAS  Google Scholar 

  • Breithaupt JL, Smoak JM, Smith TJ, Sanders CJ, Hoare A (2012) Organic carbon burial rates in mangrove sediments: strengthening the global budget. Glob Biogeochem Cycles 26, GB3011, doi:10.1029/2012GB004375

  • Brown S, Lugo AE (1984) Biomass of tropical forests: a new estimate based on forest volumes. Science 223:1290–1293

    Article  CAS  PubMed  Google Scholar 

  • Bulmer RH, Lundquist C, Schwendenmann L (2015) Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences 12(20):6169–6180

    Article  Google Scholar 

  • Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BC (2003) Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J Ecol 91(6):1093–1105. doi:10.1046/j.1365-2745.2003.00841.x

    Article  Google Scholar 

  • Cai W-J (2011) Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci 3:123–145

    Article  Google Scholar 

  • Caldeira K (2012) Avoiding mangrove destruction by avoiding carbon dioxide emissions. Proc Natl Acad Sci 109(36):14287–14288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Call M, Maher DT, Santos IR, Ruiz-Halpern S, Mangion P, Sanders CJ, Erler DV, Oakes JM, Rosentreter J, Murray R (2015) Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek. Geochim Cosmochim Acta 150:211–225

    Article  CAS  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320(5882):1456–1457

    Article  CAS  PubMed  Google Scholar 

  • Cannicci S, Burrows D, Fratini S, Smith TJ, Offenberg J, Dahdouh-Guebas F (2008) Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquat Bot 89(2):186–200

    Article  Google Scholar 

  • Castañeda-Moya E, Rivera-Monroy VH, Twilley RR (2006) Mangrove zonation in the dry life zone of the Gulf of Fonseca, Honduras. Estuar Coasts 29(5):751–764

    Article  Google Scholar 

  • Castañeda-Moya E, Twilley RR, Rivera-Monroy VH (2013) Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For Ecol Manag 307:226–241

    Article  Google Scholar 

  • Castañeda-Moya E, Twilley RR, Rivera-Monroy VH, Marx BD, Coronado-Molina C, Ewe SML (2011) Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14(7):1178–1195. doi:10.1007/s10021-011-9473-3

    Article  CAS  Google Scholar 

  • Castañeda-Moya E, Twilley RR, Rivera-Monroy VH, Zhang KQ, Davis SE, Ross M (2010) Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuar Coasts 33(1):45–58. doi:10.1007/S12237-009-9242-0

    Article  CAS  Google Scholar 

  • Chalermchatwilai B, Poungparn S, Patanaponpaiboon P (2011) Distribution of fine-root necromass in a secondary mangrove forest in Trat province, Eastern Thailand. ScienceAsia 37:1–5

    Article  Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9(7):1041–1050

    Article  CAS  Google Scholar 

  • Chen L, Zan Q, Li M, Shen J, Liao W (2009) Litter dynamics and forest structure of the introduced Sonneratia caseolaris mangrove forest in Shenzhen, China. Estuar Coast Shelf Sci 85(2):241–246. doi:http://dx.doi.org/10.1016/j.ecss.2009.08.007

    Article  Google Scholar 

  • Chen R, Twilley RR (1999) A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44:93–118

    Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17(4):12. doi:10.1029/2002gb001917

    Article  CAS  Google Scholar 

  • Christensen B (1978) Biomass and primary production of Rhizophora apiculata Bl. in a mangrove in southern Thailand. Aquat Bot 4:43–52. doi:http://dx.doi.org/10.1016/0304-3770(78)90005-0

    Article  Google Scholar 

  • Cifuentes LA, Coffin RB, Solorzano L, Cardenas W, Espinoza J, Twilley RR (1996) Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary. Estuar Coast Shelf Sci 43(6):781–800

    Article  CAS  Google Scholar 

  • Cintrón G, Schaeffer-Novelli Y (1984) Caracteristicas y desarrollo estructural de los manglares de Norte y Sur America. Cienc Interam 25(1–4):4–15

    Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11(2):356–370

    Article  Google Scholar 

  • Cole TG, Ewel KC, Devoe NN (1999) Structure of mangrove trees and forests in Micronesia. For Ecol Manag 117(1–3):95–109. doi:http://dx.doi.org/10.1016/S0378-1127(98)00474-5

    Article  Google Scholar 

  • Comeaux RS, Allison MA, Bianchi TS (2012) Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuar Coast Shelf Sci 96:81–95. doi:10.1016/j.ecss.2011.10.003

    Article  CAS  Google Scholar 

  • Cormier N, Twilley RR, Ewel KC, Krauss KW (2015) Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia 750(1):69–87

    Article  CAS  Google Scholar 

  • Coronado-Molina C, Alvarez-Guillen H, Day JW Jr, Reyes E, Perez BC, Vera-Herrera F, Twilley R (2012) Litterfall dynamics in carbonate and deltaic mangrove ecosystems in the Gulf of Mexico. Wetl Ecol Manag 20(2):123–136. doi:10.1007/s11273-012-9249-3

    Article  CAS  Google Scholar 

  • Crase B, Liedloff A, Vesk PA, Burgman MA, Wintle BA (2013) Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Glob Ecol Biogeogr 22(7):806–817. doi:10.1111/geb.12063

    Article  Google Scholar 

  • Cuevas E, Medina E (1988) Nutrient dynamics within amazonian forests II. Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76:222–235

    Article  PubMed  Google Scholar 

  • Danielson TM (2016) Everglades mangrove forest response to large-scale disturbance: long-term assessment of structural and functional properties. Louisiana State University, Baton Rouge

    Google Scholar 

  • Davis SE, Childers DL, Day JW, Rudnick DT, Sklar FH (2001) Wetland-water column exchanges of carbon, nitrogen, and phosphorus in a southern Everglades dwarf mangrove. Estuaries 24(4):610–622

    Article  CAS  Google Scholar 

  • Day JW, Conner WH, Ley-Lou F, Day RH, Navarro AM (1987) The productivity and composition of mangrove forests, Laguna de Terminos, Mexico. Aquat Bot 27:267–284

    Article  Google Scholar 

  • Day JW, Coronado-Molina C, Vera-Herrera FR, Twilley RR, Rivera-Monroy VH, Alvarez-Guillen H, Day R, Conner W (1996) A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat Bot 55(1):39–60

    Article  Google Scholar 

  • Dittmar T, Hertkorn N, Kattner G, Lara RJ (2006) Mangroves, a major source of dissolved organic carbon to the oceans. Glob Biogeochem Cycles 20, GB1012, doi:10.1029/2005GB002570

  • Dittmar T, Lara RJ (2001) Do mangroves rather than rivers provide nutrients to coastal environments south of the Amazon River? Evidence from long-term flux measurements. Mar Ecol Prog Ser 213:67–77

    Article  CAS  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297. doi:http://www.nature.com/ngeo/journal/v4/n5/abs/ngeo1123.html - supplementary-information

    Article  CAS  Google Scholar 

  • Doughty CL, Langley JA, Walker WS, Feller IC, Schaub R, Chapman SK (2016) Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuar Coasts 39(2):385–396

    Article  CAS  Google Scholar 

  • Duarte CM, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41(8):1758–1766

    Article  CAS  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2(1):1–8

    Article  CAS  Google Scholar 

  • Ellison AM (2002) Macroecology of mangroves: large-scale patterns and processes in tropical coastal forests. Trees-Struct Funct 16(2–3):181–194. doi:10.1007/s00468-001-0133-7

    Article  Google Scholar 

  • Ewe SML, Gaiser EE, Childers DL, Iwaniec D, Rivera-Monroy VH, Twilley RR (2006) Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569:459–474. doi:10.1007/S10750-006-0149-5

    Article  Google Scholar 

  • Ewel KC, Twilley RR, Eong-Ong J (1998) Different kinds of mangrove forests provide different goods and services. Glob Ecol Biogeogr 7:83–94

    Article  Google Scholar 

  • Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65(4):477–505

    Article  Google Scholar 

  • Feller IC, Lovelock C, Berger U, McKee K, Joye S, Ball M (2010) Biocomplexity in mangrove ecosystems. Annu Rev Mar Sci 2:395–417

    Article  CAS  Google Scholar 

  • Feller IC, Lovelock C, McKee KL (2007) Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. Ecosystems 10(3):347–359

    Article  CAS  Google Scholar 

  • Ferreira T, Otero X, Vidal-Torrado P, Macías F (2007) Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma 142(1):36–46

    Article  CAS  Google Scholar 

  • Fleming M, Lin G, Sternberg LSL (1990) Influence of mangrove detritus in an estuarine ecosystem. Bull Mar Sci 47:663–669

    Google Scholar 

  • Fontalvo-Herazo ML, Piou C, Vogt J, Saint-Paul U, Berger U (2011) Simulating harvesting scenarios towards the sustainable use of mangrove forest plantations. Wetl Ecol Manag 19(5):397–407. doi:10.1007/s11273-011-9224-4

    Article  Google Scholar 

  • Friess DA, Webb EL (2014) Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. Glob Ecol Biogeogr 23(7):715–725

    Article  Google Scholar 

  • Fry B, Smith TJ (2002) Stable isotope studies of red mangroves and filter feeders from the Shark River estuary, Florida. Bull Mar Sci 70(3):871–890

    Google Scholar 

  • Ganguly D, Dey M, Mandal S, De T, Jana T (2008) Energy dynamics and its implication to biosphere–atmosphere exchange of CO2, H2O and CH 4 in a tropical mangrove forest canopy. Atmos Environ 42(18):4172–4184

    Article  CAS  Google Scholar 

  • Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim Chang 106(1):7–29. doi:10.1007/s10584-010-0003-7

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20(1):154–159

    Article  Google Scholar 

  • Giri C, Zhu Z, Tieszen L, Singh A, Gillette S, Kelmelis J (2008) Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J Biogeogr 35(3):519–528

    Article  Google Scholar 

  • Gleason S, Ewel KC (2002) Organic matter dynamics on the forest floor of a Micronesian mangrove forest: an investigation of speices composition shifts. Biotropica 34(2):190–198

    Article  Google Scholar 

  • Golley FB, Odum HT, Wilson RF (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43:9–19

    Article  CAS  Google Scholar 

  • Gong W-K, Ong J-E (1990) Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar Coast Shelf Sci 31(5):519–530. doi:http://dx.doi.org/10.1016/0272-7714(90)90010-O

    Article  CAS  Google Scholar 

  • Graham SA, Mendelssohn IA (2016) Contrasting effects of nutrient enrichment on below-ground biomass in coastal wetlands. J Ecol 104(1):249–260

    Article  CAS  Google Scholar 

  • Granek EF, Compton JE, Phillips DL (2009) Mangrove-exported nutrient incorporation by sessile coral reef invertebrates. Ecosystems 12(3):462–472

    Article  CAS  Google Scholar 

  • Heald EJ (1969) The production of organic detritus in a south Florida estuary. Ph.D. Disseration, University of Miami, Coral Gables, Florida

    Google Scholar 

  • Hemminga MA, Slim FJ, Kazungu J, Ganssen GM, Nieuwenhuize J, Kruyt NM (1994) Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Mar Ecol Prog Ser 106:291–301

    Article  Google Scholar 

  • Hopkinson CS, Cai WJ, Hu XP (2012) Carbon sequestration in wetland dominated coastal systems – a global sink of rapidly diminishing magnitude. Curr Opin Environ Sustain 4(2):186–194. doi:10.1016/j.cosust.2012.03.005

    Article  Google Scholar 

  • Houghton R (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  CAS  Google Scholar 

  • Houghton RA (1994) The worldwide extent of land-use change. Bioscience 44(5):305–313

    Article  Google Scholar 

  • Hutchison J, Manica A, Swetnam R, Balmford A, Spalding M (2013) Predicting global patterns in mangrove forest biomass. Conserv Lett 7(3):233–240

    Article  Google Scholar 

  • Jackson RB, Mooney H, Schulze E-D (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci 94(14):7362–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe R, Boyer JN, Lu X, Maie N, Yang C, Scully NM, Mock S (2004) Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar Chem 84(3–4):195–210

    Article  CAS  Google Scholar 

  • Jaffe R, Mead R, Hernandez ME, Peralba MC, DiGuida OA (2001) Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Org Geochem 32(4):507–526

    Article  CAS  Google Scholar 

  • Jardine SL, Siikamäki JV (2014) A global predictive model of carbon in mangrove soils. Environ Res Lett 9(10):104013

    Article  CAS  Google Scholar 

  • Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89(1):23–30

    Article  PubMed  Google Scholar 

  • Jin-Eong O, Khoon GW, Clough BF (1995) Structure and productivity of a 20-year-old stand of Rhizophora apiculata Bl. mangrove forest. J Biogeogr 22(2/3):417–424. doi:10.2307/2845938

    Article  Google Scholar 

  • Junk W, Piedade M, Lourival R, Wittmann F, Kandus P, Lacerda L, Bozelli R, Esteves F, Nunes da Cunha C, Maltchik L (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshwat Ecosyst 24(1):5–22

    Article  Google Scholar 

  • Kairo J, Bosire J, Langat J, Kirui B, Koedam N (2009) Allometry and biomass distribution in replanted mangrove plantations at Gazi Bay, Kenya. Aquat Conserv Mar Freshwat Ecosyst 19(S1):S63–S69

    Article  Google Scholar 

  • Kairo JG, Lang’at JKS, Dahdouh-Guebas F, Bosire J, Karachi M (2008) Structural development and productivity of replanted mangrove plantations in Kenya. For Ecol Manag 255(7):2670–2677. doi:http://dx.doi.org/10.1016/j.foreco.2008.01.031

    Article  Google Scholar 

  • Kauffman JB, Heider C, Cole TG, Dwire KA, Donato DC (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31(2):343–352

    Article  Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2009) Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetl Ecol Manag 17(6):585–599

    Article  Google Scholar 

  • Khan NI, Suwa R, Hagihara A (2007) Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil-vegetation system. Wetl Ecol Manag 15:141–153

    Article  CAS  Google Scholar 

  • Kirwan M, Temmerman S (2009) Coastal marsh response to historical and future sea-level acceleration. Quat Sci Rev 28(17):1801–1808. doi:http://dx.doi.org/10.1016/j.quascirev.2009.02.022

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR (2012) Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J Ecol 100(3):764–770. doi:10.1111/j.1365-2745.2012.01957.x

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37. doi:10.1029/2010gl045489

  • Kirwan ML, Mudd SM (2012) Response of salt-marsh carbon accumulation to climate change. Nature 489(7417):550. doi:10.1038/nature11440

    Article  CAS  PubMed  Google Scholar 

  • Komiyama A, Ogino K, Aksornkoae S, Sabhasri S (1987) Root biomass of a mangrove forest in southern Thailand,. 1. Estimation by the trench method and the zonal structure of root biomass. J Trop Ecol 3:97–108

    Article  Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89(2):128–137

    Article  Google Scholar 

  • Koné Y-M, Borges A (2008) Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Estuar Coast Shelf Sci 77(3):409–421

    Article  Google Scholar 

  • Krauss KW, Doyle TW, Twilley RR, Rivera-Monroy VH, Sullivan JK (2006) Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569:311–324. doi:10.1007/S10750-006-0139-7

    Article  CAS  Google Scholar 

  • Krauss KW, Doyle TW, Twilley RR, Smith TJ, Whelan KRT, Sullivan JK (2005) Woody debris in the mangrove forests of South Florida. Biotropica 37(1):9–15

    Article  Google Scholar 

  • Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SM, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89(2):105–127

    Article  Google Scholar 

  • Kreuzwieser J, Buchholz J, Rennenberg H (2003) Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biol 5(04):423–431

    Article  CAS  Google Scholar 

  • Kristensen E (1988) Benthic fauna and biogeochemical processes in marine sediments. II. Microbial activities and fluxes. In: Blackburn TH, Sørensen J (eds) Nitrogen cycling in coastal marine environments. Wiley, Chichester, pp 275–299

    Google Scholar 

  • Kristensen E (2007) Carbon balance in mangrove sediments: the driving processes and their controls. In: Greenhouse gas and carbon balances in mangrove coastal ecosystems. Gendai Tosho, Tokyo, pp 61–78

    Google Scholar 

  • Kristensen E (2008) Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59(1):30–43

    Article  Google Scholar 

  • Kristensen E, Alongi DM (2006) Control by fiddler crabs (Uca vocas) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnol Oceanogr 51(4):1557–1571

    Article  CAS  Google Scholar 

  • Kristensen E, Andersen FØ, Holmboe N, Holmer M, Thongtham N (2000) Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat Microb Ecol 22(2):199–213

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89(2):201–219

    Article  CAS  Google Scholar 

  • Kristensen E, Mangion P, Tang M, Flindt MR, Holmer M, Ulomi S (2011) Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests. Biogeochemistry 103(1–3):143–158

    Article  CAS  Google Scholar 

  • Kuenzer C, Bluemel A, Gebhardt S, Quoc TV, Dech S (2011) Remote sensing of mangrove ecosystems: a review. Remote Sens 3(5):878–928

    Article  Google Scholar 

  • Lee S (1995) Mangrove outwelling: a review. Hydrobiologia 295(1–3):203–212

    Article  Google Scholar 

  • Lee S (1997) Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa. Mar Ecol Prog Ser 159:275–284

    Article  Google Scholar 

  • Lee SY (1989a) The importance of sesarminae crabs Chiromanthes spp. and inundation frequency on mangrove (Kandelia candel (L.) Druce) leaf litter turnover in a Hong Kong tidal shrimp pond. J Exp Mar Biol Ecol 131:23–43

    Article  Google Scholar 

  • Lee SY (1989b) Litter production and turnover of the mangrove Kandelia candel (L.) Druce in a Hong Kong tidal shrimp pond. Estuar Coast Shelf Sci 29:75–87

    Article  Google Scholar 

  • Lee SY (1990) Primary productivity and particulate organic matter flow in an estuarine mangrove-wetland in Hong Kong. Mar Biol 106:453–463

    Article  Google Scholar 

  • Lee SY (2004) Relationship between mangrove abundance and tropical prawn production: a re-evaluation. Mar Biol 145(5):943–949

    Article  Google Scholar 

  • Lee SY (2005) Exchange of organic matter and nutrients between mangroves and estuaries: myths, methodological issues and missing links. Int J Ecol Environ Sci 31(3):163–176

    Google Scholar 

  • Lee SY (2008) Mangrove macrobenthos: assemblages, services, and linkages. J Sea Res 59(1):16–29

    Article  Google Scholar 

  • Leopold A, Marchand C, Deborde J, Allenbach M (2015) Temporal variability of CO2 fluxes at the sediment-air interface in mangroves (New Caledonia). Sci Total Environ 502:617–626

    Google Scholar 

  • Leopold A, Marchand C, Deborde J, Chaduteau C, Allenbach M (2013) Influence of mangrove zonation on CO2 fluxes at the sediment–air interface (New Caledonia). Geoderma 202:62–70

    Google Scholar 

  • Li X, Zhu J, Lange H, Han S (2012) A modified ingrowth core method for measuring fine root production, mortality and decomposition in forests. Tree Physiol 33(1):18–25

    Article  PubMed  Google Scholar 

  • Linto N, Barnes J, Ramachandran R, Divia J, Ramachandran P, Upstill-Goddard R (2014) Carbon dioxide and methane emissions from mangrove-associated waters of the Andaman Islands, Bay of Bengal. Estuar Coasts 37(2):381–398

    Article  CAS  Google Scholar 

  • Lopez-Hoffman L, Anten NP, Martinez-Ramos M, Ackerly DD (2007) Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia 150(4):545–556

    Article  PubMed  Google Scholar 

  • Lovelock C, Feller IC, Ball M, Engelbrecht B, Ewe ML (2006) Difference in plant function in phosphorous- and nitrgoen- limited mangrove ecosystems. New Phytol 172:514–522

    Article  CAS  PubMed  Google Scholar 

  • Lovelock C, Feller IC, McKee KL, Engelbrecht B, Ball M (2004) The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Funct Ecol 18(1):25–33

    Article  Google Scholar 

  • Lovelock CE (2008) Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11(2):342–354

    Article  CAS  Google Scholar 

  • Lovelock CE, Feller IC, Ellis J, Schwarz AM, Hancock N, Nichols P, Sorrell B (2007) Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia 153(3):633–641

    Article  PubMed  Google Scholar 

  • Ludovici KH, Zarnoch SJ, Richter DD (2002) Modeling in-situ pine root decomposition using data from a 60-year chronosequence. Can J For Res 32(9):1675–1684

    Article  Google Scholar 

  • Lugo AE (1990) Fringe wetlands. In: Lugo AE, Brinson M, Brown S (eds) Forested wetlands, Ecosystems of the world, vol 15. Elsevier, Amsterdam, pp 143–169

    Google Scholar 

  • Lugo AE (1997) Old-growth mangrove forests in the United States. Conserv Biol 11(1):11–20. doi:10.2307/2387271

    Article  Google Scholar 

  • Lugo AE, Brown S, Brinson MM (1988) Forested wetlands in freshwater and salt-water environments. Limnol Oceanogr 33(4):894–909. doi:10.2307/2837228

    CAS  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Ann Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Lynch JC, Meriwether JR, McKee BA, Vera-Herrera F, Twilley RR (1989) Recent accretion in mangrove ecosystems based on 137Cs and 210Pb. Estuaries 12:284–299

    Article  CAS  Google Scholar 

  • Machiwa JF (1999) Lateral fluxes of organic carbon in a mangrove forest partly contaminated with sewage wastes. Mangrove Salt Marshes 3(2):95–104

    Article  Google Scholar 

  • Macnae W (1974) Mangrove forests and fisheries. Food and Agriculture Organization of the United Nations/United Nations Development Programme, Rome

    Google Scholar 

  • Maher DT, Santos IR, Golsby-Smith L, Gleeson J, Eyre BD (2013) Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnol Oceanogr 58(2):475–488

    Article  CAS  Google Scholar 

  • Maie N, Pisani O, Jaffe R (2008) Mangrove tannins in aquatic ecosystems: their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnol Oceanogr 53(1):160–171

    Article  CAS  Google Scholar 

  • Majdi H, Kangas P (1997) Demography of fine roots in response to nutrient applications in a Norway spruce stand in southwestern Sweden. Ecoscience 4(2):199–205

    Article  Google Scholar 

  • McKee KL (2011) Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar Coast Shelf Sci 91(4):475–483

    Article  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16(5):545–556. doi:10.1111/j.1466-8238.2007.00317.x

    Article  Google Scholar 

  • McKee KL, Faulkner PL (2000) Restoration of biogeochemical function in mangrove forests. Restor Ecol 8(3):247–259

    Article  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560

    Article  Google Scholar 

  • Mfilinge PL, Atta N, Tsuchiya M (2002) Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay, Okinawa, Japan. Trees 16:172–180

    Article  CAS  Google Scholar 

  • Mfilinge PL, Meziane T, Bachok Z, Tsuchiya M (2005) Litter dynamics and particulate organic matter outwelling from a subtropical mangrove in Okinawa Island, South Japan. Estuar Coast Shelf Sci 63(1–2):301–313. doi:http://dx.doi.org/10.1016/j.ecss.2004.11.022

    Article  CAS  Google Scholar 

  • Middleton BA, McKee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828

    Article  Google Scholar 

  • Moncrieff JB, Jarvis PG, Valentini R (2000) Canopy fluxes. In: Methods in ecosystem science. Springer, New York/London, pp 161–180

    Chapter  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66(4):1377–1390

    Article  Google Scholar 

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73(4):1139–1147

    Article  Google Scholar 

  • Naidoo G (2009) Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquat Bot 90(2):184–190

    Article  CAS  Google Scholar 

  • Nielsen OI, Kristensen E, Macintosh DJ (2003) Impact of fiddler crabs (Uca spp.) on rates and pathways of benthic mineralization in deposited mangrove shrimp pond waste. J Exp Mar Biol Ecol 289(1):59–81

    Article  CAS  Google Scholar 

  • Nixon SW (1980) Between coastal marshes and coastal waters-a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In: Hamilton P, MacDonald KB (eds) Estuarine and wetland processes with emphasis on modeling. Plenum, New York, pp 437–525

    Chapter  Google Scholar 

  • Odum EP (2002) Tidal marshes as outwelling/pulsing systems. In: Concepts and controversies in tidal marsh ecology. Dordrecht, pp 3–7

    Google Scholar 

  • Odum WE (1984) Dual-gradient concept of detritus transport and processing in estuaries. Bull Mar Sci 35(3):510–521

    Google Scholar 

  • Odum WE, Heald EJ (1972) Trophic analyses of an estuarine mangrove community. Bull Mar Sci 22:671–738

    Google Scholar 

  • Odum WE, Heald EJ (1975) The detritus-based food web of an estuarine mangrove community. In: Cronin LE (ed) Estuarine research. Academic, New York, pp 265–286

    Google Scholar 

  • Ólafsson E, Buchmayer S, Skov MW (2002) The East African decapod crab Neosarmatium meinerti (de Man) sweeps mangrove floors clean of leaf litter. AMBIO J Hum Environ 31(7):569–573

    Article  Google Scholar 

  • Olafsson E, Ndaro S (1998) Impact of the mangrove crabs Uca annulipes and Dotilla fenestrata on meiobenthos. Oceanogr Lit Rev 6(45):1004–1005

    Google Scholar 

  • Ong JE, Khoon GW, Hoong WC, Dhanarajan G (1979) Productivity of a managed mangrove forest in west Malaysia. In: Noor, YM (ed) Trends in applied biology in southeast Asia. University Sains Press, Penang, pp 1–10

    Google Scholar 

  • Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob Chang Biol 19(5):1482–1494

    Article  PubMed  Google Scholar 

  • Parkinson RW, DeLaune RD, White JR (1994) Holocene sea-level rise and the fate of mangrove forests within the wider caribbean region. J Coast Res 10(4):1077–1086

    Google Scholar 

  • Peckarsky BL (1980) Influence of detritus upon colonization of stream invertebrates. Can J Fish Aquat Sci 37(6):957–963

    Article  Google Scholar 

  • Penha-Lopes G, Kristensen E, Flindt M, Mangion P, Bouillon S, Paula J (2010) The role of biogenic structures on the biogeochemical functioning of mangrove constructed wetlands sediments–a mesocosm approach. Mar Pollut Bull 60(4):560–572

    Article  CAS  PubMed  Google Scholar 

  • Pineda JEM (2003) The contribution of mangrove outwelling to coastal food webs as a function of environmental settings. University of Louisiana at Lafayette, Lafayette

    Google Scholar 

  • Pool DJ, Lugo AE, Snedaker SC (1975) Litter production in mangrove forests of southern Florida and Puerto Rico. In: Walsh GE, Snedaker SC, Teas HJ (eds) Proceedings of the international symposium on biology and management of mangroves. East-West Center, Honolulu, pp 213–237

    Google Scholar 

  • Poret N, Twilley RR, Rivera-Monroy VH, Coronado-Molina C (2007) Belowground decomposition of mangrove roots in Florida Coastal Everglades. Estuar Coasts 30(3):491–496

    Article  CAS  Google Scholar 

  • Primavera JH (1996) Stable carbon and nitrogen isotope ratios of Penaeid juveniles and primary producers in a reverine mangrove in Guimaras, Philippines. Bull Mar Sci 58:675–683

    Google Scholar 

  • Purvaja R, Ramesh R (2001) Natural and anthropogenic methane emission from coastal wetlands of South India. Environ Manag 27(4):547–557

    Article  CAS  Google Scholar 

  • Putz FE, Chan HT (1986) Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. For Ecol Manag 17:211–230

    Article  Google Scholar 

  • Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30(9):1148–1160

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Jian S, Lu H, Zhang Q, Shen W, Han W, Yin Z, Guo Q (2008) Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China. Ecol Res 23(2):401–407. doi:10.1007/s11284-007-0393-9

    Article  Google Scholar 

  • Rivera-Monroy, VH, Castañeda-Moya E, Barr JG, Engel V, Fuentes JD, Troxler TG, Twilley RR, Bouillon S, Smith TJ, O’Halloran TL (2013). Current Methods to Evaluate Net Primary Production and Carbon Budgets in Mangrove Forests. In: DeLaune RD, Reddy KR, Richardson CJ, Megonigal JP (eds) Methods in Biogeochemistry of Wetlands, SSSA Book Ser. 10. SSSA, Madison, WI, pp 243–288. doi:10.2136/sssabookser10.c14

  • Robertson A, Alongi D (1995) Role of riverine mangrove forests in organic carbon export to the tropical coastal ocean: a preliminary mass balance for the Fly Delta (Papua New Guinea). Geo-Mar Lett 15(3–4):134–139

    Article  Google Scholar 

  • Robertson A, Alongi D, Boto K (1993) Food chains and carbon fluxes. In: Alongi DM, Robertson AI (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, D. C, pp 293–326. doi:10.1029/CE041p0293

    Google Scholar 

  • Robertson AI (1986) Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp) in northeastern Australia. J Exp Mar Biol Ecol 102:237–248

    Article  Google Scholar 

  • Rodelli MR, Gearing JN, Gearing PJ, Marshall N, Sasekumar A (1984) Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems. Oecologia 61:326–333

    Article  CAS  PubMed  Google Scholar 

  • Romigh MM, Davis SE, Rivera-Monroy VH, Twilley RR (2006) Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569:505–516. doi:10.1007/S10750-006-0152-X

    Article  CAS  Google Scholar 

  • Ross MS, Meeder JF, Sah JP, Ruiz PL, Telesnicki GJ (2000) The southeast saline everglades revisited: 50 years of coastal vegetation change. J Veg Sci 11:101–112

    Article  Google Scholar 

  • Ross MS, Ruiz PL, Telesnicki GJ, Meeder JF (2001) Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (USA). Wetl Ecol Manag 9(1):27–37

    Article  Google Scholar 

  • Rovai A, Riul P, Twilley R, Castañeda-Moya E, Rivera-Monroy V, Williams A, Simard M, Cifuentes-Jara M, Lewis R, Crooks S (2016) Scaling mangrove aboveground biomass from site-level to continental-scale. Glob Ecol Biogeogr 25(3):286–298

    Article  Google Scholar 

  • Saenger P, Snedaker SC (1993) Pantropical trends in mangroves above-ground biomass and annual litterfall. Oecologia 96:293–299

    Article  PubMed  Google Scholar 

  • Saintilan N (2004) Relationships between estuarine geomorphology, wetland extent and fish landings in New South Wales estuaries. Estuar Coast Shelf Sci 61(4):591–601

    Article  Google Scholar 

  • Saintilan N, Rogers K, Mckee K (2009) Salt marsh-mangrove interactions in Australasia and the Americas. In: G.M Perillo E Wolanski, D. Cahoon & M. Brinson (ed) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 855–884

    Google Scholar 

  • Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20(1):147–157. doi:10.1111/gcb.12341

    Article  PubMed  Google Scholar 

  • Santantonio D, Hermann R (1985) Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western Oregon. Ann Sci For 2:113–142

    Google Scholar 

  • Sasekumar A, Chong V, Leh M, D’cruz R (1992) Mangroves as a habitat for fish and prawns. Hydrobiologia 247(1–3):195–207

    Article  Google Scholar 

  • Schaeffer-Novelli Y, Cintrón-Molero G, Adaime RR, de Camargo TM (1990) Variability of mangrove ecosystems along the Brazilian coast. Estuar Coasts 13(2):204–218. doi:10.2307/1351590

    Article  Google Scholar 

  • Sell MG (1977) Modeling the response of mangrove ecosystems to herbicide spraying, hurricanes, nutrient enrichment and economic development. Ph.D. Thesis, University of Florida, Gainesville, Florida

    Google Scholar 

  • Sessegolo GC, Lana PC (1991) Decomposition of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa leaves in a mangrove of Paranagua Bay (southeastern Brazil). Bot Mar 34:285–289

    Article  Google Scholar 

  • Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6(4):384–398

    Article  Google Scholar 

  • Siikamäki J, Sanchirico JN, Jardine SL (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc Natl Acad Sci 109(36):14369–14374

    Article  PubMed  PubMed Central  Google Scholar 

  • Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR (2008) A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: application to Cienaga Grande de Santa Marta, Colombia. Remote Sens Environ 112(5):2131–2144. doi:10.1016/J.Rse.2007.10.012

    Article  Google Scholar 

  • Simard M, Zhang KQ, Rivera-Monroy VH, Ross MS, Ruiz PL, Castaneda-Moya E, Twilley RR, Rodriguez E (2006) Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm Eng Remote Sens 72(3):299–311

    Article  Google Scholar 

  • Smith TJ, Anderson GH, Balentine K, Tiling G, Ward GA, Whelan KR (2009) Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29(1):24–34

    Article  Google Scholar 

  • Snedaker SC, Baquer SJ, Behr PJ, Ahmed SI (1995) Biomass distribution in Avicennia marina plants in the Indus River Delta, Pakistan. In: Thompson MF, Tirmizi NM (eds) The Arabian sea. Vanguard, Lahore, p 724

    Google Scholar 

  • Sousa W, Dangremond E (2011) Trophic interactions in coastal and estuarine mangrove forest ecosystems. Treatise Estuar Coast Sci 6:43–93

    Article  Google Scholar 

  • Stieglitz TC, Clark JF, Hancock GJ (2013) The mangrove pump: the tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets. Geochim Cosmochim Acta 102:12–22

    Article  CAS  Google Scholar 

  • Sukardjo S, Yamada I (1992) Biomass and productivity of a Rhizophora mucronata Lamarck plantation in Tritih, Central Java, Indonesia. For Ecol Manag 49(3–4):195–209

    Article  Google Scholar 

  • Sutula MA, Perez BC, Reyes E, Childers DL, Davis S, Day JW, Rudnick D, Sklar F (2003) Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA). Estuar Coast Shelf Sci 57(5):757–781

    Article  CAS  Google Scholar 

  • Tamooh F, Huxham M, Karachi M, Mencuccini M, Kairo J, Kirui B (2008) Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. For Ecol Manag 256(6):1290–1297

    Article  Google Scholar 

  • Thom BG (1982) Mangrove ecology-a geomorphological perspective. In: Clough BF (ed) Mangrove ecosystems in Australia. Australian National University Press, Canberra, pp 3–17

    Google Scholar 

  • Troxler TG, Barr JG, Fuentes JD, Engel V, Anderson G, Sanchez C, Lagomasino D, Price R, Davis SE (2015) Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agric For Meteorol 213:273–282

    Article  Google Scholar 

  • Twilley RR (1985) The exchange of organic-carbon in basin mangrove forests in a southwest Florida estuary. Estuar Coast Shelf Sci 20(5):543–557

    Article  CAS  Google Scholar 

  • Twilley RR (1988) Coupling of mangroves to the productivity of estuarine and coastal waters. In: Janson BO (ed) Coastal-offshore ecosystem interactions. Springer, Berlin, pp 155–180

    Google Scholar 

  • Twilley RR (1995) Properties of mangrove ecosystems related to the energy signature of coastal environments. In: Hall CAS (ed) Maximum power: the ideas and applications of H. T. Odum. University Press of Colorado, Niwot, pp 43–62

    Google Scholar 

  • Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangroves and theirs implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288

    Article  CAS  Google Scholar 

  • Twilley RR, Lugo AE, Patterson-Zucca C (1986) Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67(3):670–683

    Article  Google Scholar 

  • Twilley RR, Pozo M, Garcia VH, Rivera-Monroy VH, Zambrano R, Bodero A (1997) Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111:109–122

    Article  PubMed  Google Scholar 

  • Twilley RR, Rivera-Monroy VH (2005) Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J Coast Res 40:79–93

    Google Scholar 

  • Twilley RR, Rivera-Monroy VH (2009) Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands. Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 641–683

    Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  • Werry J, Lee S (2005) Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains. Mar Ecol Prog Ser 293:165–176

    Article  Google Scholar 

  • Whelan KRT, Smith TJ, Cahoon DR, Lynch JC, Anderson GH (2005) Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth. Estuaries Coasts 28(6):833–843. doi:10.1007/bf02696013

    Article  Google Scholar 

  • Woodroffe C (1992) Mangrove sediments and geomorphology. In: Robertson AI, Alongi DM (eds) Coastal and estuarine studies, Chapter 2. American Geophysical Union, Washington, D. C, pp 7–41

    Google Scholar 

  • Woodroffe CD (1985) Studies of a mangrove basin, Tuff Crater, New Zealand: II. Comparison of volumetric and velocity-area methods of estimating tidal flux. Estuar Coast Shelf Sci 20:431–445

    Article  Google Scholar 

  • Woodroffe CD (2002) Coasts: form, process and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Woodroffe CD, Bardsley KN, Ward PJ, Hanley JR (1988) Production of mangrove litter in a macrotidal embayment, Darwin Harbour, N.T., Australia. Estuar Coast Shelf Sci 26:581–598

    Article  CAS  Google Scholar 

  • Woodroffe CD, Rogers K, McKee KL, Lovelock CE, Mendelssohn I, Saintilan N (2016) Mangrove sedimentation and response to relative sea-level rise. Annu Rev Mar Sci 8:243–266

    Article  CAS  Google Scholar 

  • Zablocki JA, Andersson AJ, Bates NR (2011) Diel aquatic CO2 system dynamics of a Bermudian mangrove environment. Aquat Geochem 17(6):841–859

    Article  CAS  Google Scholar 

  • Zhang KQ, Simard M, Ross M, Rivera-Monroy VH, Houle P, Ruiz P, Twilley RR, Whelan KRT (2008) Airborne laser scanning quantification of disturbances from hurricanes and lightning strikes to mangrove forests in Everglades National Park, USA. Sensors 8(4):2262–2292

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work represents support from several funding sources including the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program funded by the National Science Foundation (Grant #DBI-0620409, Grant #DEB-9910514, and Grant #DEB-1237517), Coastal SEES program of National Science Foundation (EAR-1427389), and Frontiers of Earth Surface Dynamics (OCE-1135427). Support was also provided by Louisiana Sea Grant College Program. ASR was partially supported by CAPES/CNPq Science without Borders Program (grant no. BEX1930/13-3). VHRM was partially funded by NASA-JPL project “Vulnerability Assessment of Mangrove Forest Regions of the Americas” (LSU Subcontract no. 1452878), and the Department of the Interior South Central Climate Science Center through Cooperative Agreement # G12AC00002. We would like to thank Paulo R. Pagliosa from Universidade Federal de Santa Catarina, Florianópolis, Brasil, and Alessandra Larissa Fonseca from Universidade Federal de Santa Catarina, Florianópolis, Brasil in helping to compile some of the mangrove statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Twilley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Twilley, R.R., Castañeda-Moya, E., Rivera-Monroy, V.H., Rovai, A. (2017). Productivity and Carbon Dynamics in Mangrove Wetlands. In: Rivera-Monroy, V., Lee, S., Kristensen, E., Twilley, R. (eds) Mangrove Ecosystems: A Global Biogeographic Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-62206-4_5

Download citation

Publish with us

Policies and ethics