Skip to main content

Lepage Manifolds

  • Chapter
  • First Online:

Part of the book series: UNIPA Springer Series ((USS))

Abstract

Lepage manifolds represent a geometric structure arising from differential equations, and related with them as close as possible. Geometric properties of Lepage manifolds reflect geometrical, topological and dynamical properties of differential equations, and vice versa. After symplectic geometry, Lepage manifolds represent a next step in understanding interrelations between differential equations, geometry and physics. The aim of this chapter is to introduce the new concept, and to stimulate deeper studies in this direction as well as applications in differential geometry, differential equations, dynamical systems, exterior differential systems, calculus of variations, and mathematical physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The concept introduced by Ehresmann in the 1950s [22, 23]; a standard book on this subject is [86].

  2. 2.

    For basics of sheaf theory needed below we refer to standard books, e.g. [6] or [93].

  3. 3.

    As explained later, for the calculus of variations the most important examples of source forms of degree n + 1 are Euler–Lagrange forms, and of source forms of degree n + 2 the Helmholtz forms.

  4. 4.

    For the sake of simplicity of notations, we shall often omit the pull-back and identify a form with its lift or projection.

  5. 5.

    Helmholtz conditions (k = 1) in the form (3) were first presented in [57]. The coordinate form of the Helmholtz conditions has been first obtained by Helmholtz [37] for second order ODEs, and by Anderson and Duchamp [3] and Krupka [47, 48] for higher order PDEs.

    For k = 2 (and mechanics) the explicit coordinate form of (3) can be found in [64] and [74].

  6. 6.

    A differential form ω of degree q > 2 on a manifold M is called multisymplectic if it is closed and nondegenerate (meaning that the Cauchy distribution of ω is zero, i.e. the condition i ζ ω = 0 implies ζ = 0) [8].

  7. 7.

    In general we cannot take simply λ since θ λ need not be global.

  8. 8.

    As we shall see, in this case the Hamilton equations become of De Donder type.

  9. 9.

    This choice of α in the Lepage class {α} is the most simple. As we know, more generally we can add to α (any) at least 2-contact form, and/or the derivative of a 1-contact form, and the dynamical form ɛ, hence the Euler–Lagrange equations, remain the same. However, the Hamilton equations then may no longer be of De Donder type.

References

  1. R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (The Benjamin/Cummings Publishing Company, Reading, 1978)

    MATH  Google Scholar 

  2. I. Anderson, The Variational Bicomplex, Utah State University, Technical Report (1989)

    Google Scholar 

  3. I. Anderson, T. Duchamp, On the existence of global variational principles. Am. J. Math. 102, 781–867 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. V.I. Arnold, V.V. Kozlov, A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006)

    MATH  Google Scholar 

  5. D.E. Betounes, Extension of the classical Cartan form. Phys. Rev. D 29, 599–606 (1984)

    Article  MathSciNet  Google Scholar 

  6. G.E. Bredon, Sheaf Theory (McGraw-Hill, New York, 1967)

    MATH  Google Scholar 

  7. R. Bryant, P. Griffiths, D. Grossmann, Exterior Differential Systems and Euler-Lagrange Partial Differential Equations. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 2003)

    Google Scholar 

  8. F. Cantrijn, L.A. Ibort, M. de León, Hamiltonian structures on multisymplectic manifolds. Rend. Sem. Mat. Univ. Pol. Torino 54, 225–236 (1996)

    MathSciNet  MATH  Google Scholar 

  9. C. Carathéodory, Über die Variationsrechnung bei mehrfachen Integralen. Acta Szeged Sect. Scient. Mathem. 4, 193–216 (1929)

    Google Scholar 

  10. J.F. Cariñena, M. Crampin, L.A. Ibort, On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1, 345–374 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. É. Cartan, Lecons Sur Les Invariants IntÉgraux (Hermann, Paris, 1922)

    MATH  Google Scholar 

  12. M. Crampin, D.J. Saunders, The Hilbert-Carathéodory and Poincaré–Cartan forms for higher-order multiple-integral variational problems. Houston J. Math. 30(3), 657–689 (2004)

    MathSciNet  MATH  Google Scholar 

  13. M. de León, P.R. Rodrigues, Generalized Classical Mechanics and Field Theory (North-Holland, Amsterdam, 1985)

    MATH  Google Scholar 

  14. M. de León, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics (North-Holland, Amsterdam, 1989)

    MATH  Google Scholar 

  15. M. de León, J.C. Marrero, D.M. de Diego, A new geometric setting for classical field theories. Banach Cent. Publ. 59, 189–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Dedecker, Calcul des variations, formes différentielles et champs géodésiques, in Coll. internat. du C.N.R.S., Strasbourg, 1953 (C.N.R.S., Paris, 1954), pp. 17–34

    Google Scholar 

  17. P. Dedecker, On the generalization of symplectic geometry to multiple integrals in the calculus of variations, in Lecture Notes in Mathematics, vol. 570 (Springer, Berlin, 1977), pp. 395–456

    Google Scholar 

  18. P. Dedecker, Sur le formalisme de Hamilton–Jacobi–E. Cartan pour une intègrale multiple d’ordre supérieur. C. R. Acad. Sci. Paris Sér. I 299, 363–366 (1984)

    MATH  Google Scholar 

  19. P. Dedecker, Existe-t-il, en calcul des variations, un formalisme de Hamilton-Jacobi-É. Cartan pour les intégrales multiples d’ordre supérieur? C. R. Acad. Sci. Paris Sér. 1 298, 397–400 (1984)

    Google Scholar 

  20. A. Echeverria-Enriquez, M.C. Muñoz-Lecanda, N. Román-Roy, Multivector field formulation of hamiltonian field theories: equations and symmetries. J. Phys. A Math. Gen. 32, 8461–8484 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Echeverria-Enriquez, M.C. Muñoz-Lecanda, N. Román-Roy, On the multimomentum bundles and the Legendre maps in field theories. Rep. Math. Phys. 45, 85–105 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Ehresmann, Les prolongements d’une variété différentiable: 1. calcul des jets, prolongement principal. C. R. Acad. Sci. Paris 233, 598–600 (1951)

    Google Scholar 

  23. C. Ehresmann, Les prolongements d’une space fibré différentiable. C. R. Acad. Sci. Paris 240, 1755–1757 (1955)

    MathSciNet  MATH  Google Scholar 

  24. M. Ferraris, M. Francaviglia, On the global structure of the Lagrangian and Hamiltonian formalisms in higher order calculus of variations, in Proceedings of the International Meeting on Geometry and Physics, Florence, 1982, ed. by M. Modugno (Pitagora, Bologna, 1983), pp. 43–70

    Google Scholar 

  25. P.L. Garcia, The Poincaré-Cartan invariant in the calculus of variations. Symp. Math. 14, 219–246 (1974)

    Google Scholar 

  26. P.L. Garcia, J. Muñoz, On the geometrical structure of higher order variational calculus, in Modern Developments in Analytical Mechanics I: Geometrical Dynamics, ed. by S. Benenti, M. Francaviglia, A. Lichnerowicz. Proceedings of the IUTAM-ISIMM Symposium, Torino, 1982 (Accad. delle Scienze di Torino, Torino, 1983), pp. 127–147

    Google Scholar 

  27. G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory (World Scientific, Singapore, 1997)

    Book  MATH  Google Scholar 

  28. G. Giachetta, L. Mangiarotti, G. Sardanashvily, Covariant Hamilton equations for field theory. J. Phys. A Math. Gen. 32, 6629–6642 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Goldschmidt, S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier 23, 203–267 (1973)

    Google Scholar 

  30. M.J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations, I. Covariant Hamiltonian formalism, in Mechanics, Analysis and Geometry: 200 Years After Lagrange, ed. by M. Francaviglia, D.D. Holm (North Holland, Amsterdam, 1990), pp. 203–235

    Google Scholar 

  31. M.J. Gotay, J.M. Nester, G. Hinds, Presymplectic manifolds and the Dirac–Bergmann theory of constraints. J. Math. Phys. 19, 2388–2399 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. M.J. Gotay, J.A. Isenberg, J.E. Marsden, R. Montgomery, Momentum Mappings and the Hamiltonian Structure of Classical Field Theories with Constraints (Springer, New York, 1992)

    Google Scholar 

  33. K. Grabowska, Lagrangian and Hamiltonian formalism in field theory: a simple model. J. Geom. Mech. 2, 375–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. P.A. Griffiths, Exterior Differential Systems and the Calculus of Variations. Progress in Mathematics, vol. 25 (Birkhäuser, Boston, 1983)

    Google Scholar 

  35. D.R. Grigore, On a generalization of the Poincaré–Cartan form in higher-order field theory, in Variations, Geometry and Physics (Nova Science Publishers, New York, 2008), pp. 57–76

    Google Scholar 

  36. A. Haková, O. Krupková, Variational first-order partial differential equations. J. Differ. Equ. 191, 67–89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Helmholtz, Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung. J. für die reine u. angewandte Math. 100, 137–166 (1887)

    MathSciNet  MATH  Google Scholar 

  38. H.A. Kastrup, Canonical theories of Lagrangian dynamical systems in physics. Phys. Rep. 101, 1–167 (1983)

    Article  MathSciNet  Google Scholar 

  39. J. Kijowski, A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys. 30, 99–128 (1973)

    Article  MathSciNet  Google Scholar 

  40. J. Kijowski, W. Szczyrba, Multisymplectic manifolds and the geometrical construction of the Poisson brackets in the classical field theory, in Geometrie symplectique et physique mathematique. Colloques internationaux du Centre national de la recherche scientifique, vol. 237 (C.N.R.S., Paris, 1975), pp. 347–378

    Google Scholar 

  41. J. Kijowski, W.M. Tulczyjew, A Symplectic Framework for Field Theories. Lecture Notes in Physics, vol. 107 (Springer, Berlin, 1979)

    Google Scholar 

  42. I. Kolář, Some geometric aspects of the higher order variational calculus, in Geometrical Methods in Physics, ed. by D. Krupka. Proceedings of the Conference on Differential Geometry and its Applications. Nové Město na Moravě, Sept. 1983, vol. 2 (J. E. Purkyně University, Brno, 1984), pp. 155–166

    Google Scholar 

  43. M. Krbek, J. Musilová, Representation of the variational sequence by differential forms. Rep. Math. Phys. 51(2–3), 251–258 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Krbek, J. Musilová, Representation of the variational sequence by differential forms. Acta Appl. Math. 88(2), 177–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Krupka, Some geometric aspects of variational problems in fibred manifolds. Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica, Brno (Czechoslovakia) 14, 65 pp. (1973). ArXiv:math-ph/0110005

    Google Scholar 

  46. D. Krupka, A map associated to the Lepagean forms of the calculus of variations in fibred manifolds. Czechoslov. Math. J. 27, 114–118 (1977)

    MATH  Google Scholar 

  47. D. Krupka, On the local structure of the Euler-Lagrange mapping of the calculus of variations, in Proceedings of the Conference on Differential Geometry and its Applications, Nové Město na Moravě (Czechoslovakia), 1980 (Charles University, Prague, 1982), pp. 181–188. ArXiv:math-ph/0203034

    Google Scholar 

  48. D. Krupka, Lepagean forms in higher order variational theory, in Modern Developments in Analytical Mechanics I: Geometrical Dynamics, ed. by S. Benenti, M. Francaviglia, A. Lichnerowicz. Proceedings of the IUTAM-ISIMM Symposium, Torino, 1982 (Accad. Sci. Torino, Torino, 1983), pp. 197–238

    Google Scholar 

  49. D. Krupka, Variational sequences on finite order jet spaces, in Differential Geometry and Its Applications, ed. by J. Janyška, D. Krupka. Conference Proceeding, Brno, 1989 (World Scientific, Singapore, 1990), pp. 236–254

    Google Scholar 

  50. D. Krupka, Variational sequences in mechanics. Calc. Var. 5, 557–583 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Krupka, Global variational theory in fibred spaces, in Handbook of Global Analysis (Elsevier Science B. V., Amsterdam, 2008), pp.773–836

    Google Scholar 

  52. D. Krupka, Introduction to Global Variational Geometry (Atlantis Press, Amsterdam, 2015)

    Book  MATH  Google Scholar 

  53. D. Krupka, J. Šeděnková, Variational sequences and Lepage forms, in Differential Geometry and Its Applications, ed. by J. Bureš, O. Kowalski, D. Krupka, J. Slovák. Conference Proceeding, Prague, August 2004 (Charles University, Prague, 2005), pp. 617–627

    Google Scholar 

  54. D. Krupka, O. Krupková, G. Prince, W. Sarlet, Contact symmetries of the Helmholtz form. Differ. Geom. Appl. 25, 518–542 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. D. Krupka, O, Krupková, D. Saunders, The Cartan form and its generalizations in the calculus of variations. Int. J. Geom. Meth. Mod. Phys. 7, 631–654 (2010)

    Google Scholar 

  56. O. Krupková, Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity. Arch. Math. (Brno) 22, 97–120 (1986)

    MathSciNet  MATH  Google Scholar 

  57. O. Krupková, On the inverse problem of the calculus of variations for ordinary differential equations. Math. Bohem. 118, 261–276 (1993)

    MathSciNet  MATH  Google Scholar 

  58. O. Krupková, A geometric setting for higher-order Dirac–Bergmann theory of constraints. J. Math. Phys. 35, 6557–6576 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  59. O. Krupková, The Geometry of Ordinary Variational Equations. Lecture Notes in Mathematics, vol. 1678 (Springer, Berlin, 1997)

    Google Scholar 

  60. O. Krupková, Hamiltonian field theory. J. Geom. Phys. 43, 93–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. O. Krupková, Variational metric structures. Publ. Math. Debr. 62, 461–495 (2003)

    MathSciNet  MATH  Google Scholar 

  62. O. Krupková, Lepage forms in the calculus of variations, in Variations, Geometry and Physics (Nova Science Publishers, New York, 2008), pp. 29–56

    Google Scholar 

  63. O. Krupková, Variational equations on manifolds, in Advances in Mathematics Research, vol. 9 (Nova Science Publishers, New York, 2009), pp. 201–274

    Google Scholar 

  64. O. Krupková, R. Maliková, Helmholtz conditions and their generalizations. Balkan J. Geom. Appl. 15(1), 80–89 (2010)

    MathSciNet  MATH  Google Scholar 

  65. O. Krupková, G.E. Prince, Lepage forms, closed 2-forms and second-order ordinary differential equations. Russ. Math. (Iz. VUZ) 51(12), 1–16 (2007)

    Google Scholar 

  66. O. Krupková, D.J. Saunders (eds.), Variations, Geometry and Physics (Nova Science Publishers, New York, 2009), p. 360

    Google Scholar 

  67. O. Krupková, D.J. Saunders, Affine duality, and Lagrangian and Hamiltonian systems. Int. J. Geom. Methods Mod. Phys. 8, 669–697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. O. Krupková, D. Smetanová, On regularization of variational problems in first-order field theory, in Proceedings of the 20th Winter School “Geometry and Physics” (Srní, 2000). Rend. Circ. Mat. Palermo (2), Suppl. No. 66 (2001), pp. 133–140

    Google Scholar 

  69. O. Krupková, D. Smetanová, Legendre transformation for regularizable Lagrangians in field theory. Lett. Math. Phys. 58, 189–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  70. O. Krupková, D. Smetanová, Lepage equivalents of second order Euler–Lagrange forms and the inverse problem of the calculus of variations. J. Nonlin. Math. Phys. 16, 235–250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. B. Kupershmidt, Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalisms, in Lecture Notes in Mathematics, vol. 775 (Springer, Berlin, 1980), pp. 162–217

    Google Scholar 

  72. T. Lepage, Sur les champs géodésiques du calcul des variations. Bull. Acad. Roy. Belg. Cl. des Sci. 22, 716–729 (1936)

    MATH  Google Scholar 

  73. P. Libermann, C.-M. Marle, in Symplectic Geometry and Analytical Mechanics. Mathematics and Its Applications (D. Reidel, Dordrecht, 1987)

    Google Scholar 

  74. R. Malíková, On a generalization of Helmholtz conditions. Acta Math. Univ. Ostrav. 17, 11–21 (2009)

    MathSciNet  MATH  Google Scholar 

  75. L. Mangiarotti, M. Modugno, Fibred spaces, jet spaces and connections for field theories, in Proceedings of the Meeting ‘Geometry and Physics’, 1982, Florence (Pitagora, Bologna, 1982), pp. 135–165

    Google Scholar 

  76. J.E. Marsden, S. Pekarsky, S. Shkoller, M. West, Variational methods, multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38, 253–284 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  77. P.J. Olver, Equivalence and the Cartan form. Acta Appl. Math. 31, 99–136 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Palese, O. Rossi, E. Winterroth, J. Musilová, Variational sequences, representation sequences and applications in physics, 61 pp. ArXiv:1508.01752v1 [math-ph]; SIGMA 12, 045 45 pp. (2016)

    Google Scholar 

  79. H. Poincaré, Les méthodes nouvelles de la Mécanique céleste, vol. 3 (Gauthier-Villars, Paris, 1899)

    MATH  Google Scholar 

  80. O. Rossi, Homogeneous differential equations and the inverse problem of the calculus of variations. Publ. Math. Debr. 84, 165–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  81. O. Rossi, Geometry of variational partial differential equations and Hamiltonian systems, in Geometry of Jets and Fields, Banach Center Publications, vol. 110 (Inst. of Math., Polish of Academy of Sciences, Warszawa, 2016), pp. 219–237

    Google Scholar 

  82. O. Rossi, D.J. Saunders, Dual jet bundles, Hamiltonian systems and connections. Diff. Geom. Appl. 35, 178–198 (2014)

    Article  MATH  Google Scholar 

  83. O. Rossi, D. Saunders, Lagrangian and Hamiltonian duality. J. Math. Sci. 218, 813–816 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  84. W. Sarlet, Geometrical structures related to second-order equations, in Differential Geometry and Its Applications, ed. by D. Krupka, A. Švec. Conference Proceedings, Brno, 1986 (D. Reidel, Dordrecht, 1986), pp. 279–288

    Google Scholar 

  85. D.J. Saunders, Jet fields, connections and second-order differential equations. J. Phys. A Math. Gen. 20, 3261–3270 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  86. D.J. Saunders, The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series, vol. 142 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  87. D.J. Saunders, The regularity of variational problems. Contemp. Math. 132, 573–593 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  88. D.J. Saunders, A new approach to the nonlinear connection associated with second order (and higher-order) differential equation fields. J. Phys. A Math. Gen. 30, 1739–1743 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  89. E. Tonti, Variational formulation of nonlinear differential equations I, II. Bull. Acad. Roy. Belg. Cl. Sci. 55, 137–165, 262–278 (1969)

    Google Scholar 

  90. M.M. Vainberg, Variational Methods in the Theory of Nonlinear Operators (GITL, Moscow, 1959) (in Russian)

    MATH  Google Scholar 

  91. A.M. Vinogradov, A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints. Soviet Math. Dokl. 19, 144–148 (1978)

    MATH  Google Scholar 

  92. A. Weinstein, Lectures on Symplectic Manifolds. CBMS Regional Conference Series in Mathematics, vol. 29 (American Mathematical Society, Providence, 1977), 48 pp.

    Google Scholar 

  93. R.O. Wells, Differential Analysis on Complex Manifolds (Springer, Berlin, 1980)

    Book  MATH  Google Scholar 

  94. E.T. Whittaker, A Treatise on Analytical Dynamics of Particles and Rigid Bodies (The University Press, Cambridge, 1917)

    Google Scholar 

Download references

Acknowledgements

Research supported by grant No. 14-02476S Variations, Geometry and Physics of the Czech Science Foundation, and by the IRSES project LIE-DIFF-GEOM (EU FP7, nr 317721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rossi, O. (2017). Lepage Manifolds. In: Falcone, G. (eds) Lie Groups, Differential Equations, and Geometry. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62181-4_13

Download citation

Publish with us

Policies and ethics