Skip to main content

Coherent Parametric Instabilities

  • Chapter
  • First Online:
Book cover Space Charge Physics for Particle Accelerators

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 795 Accesses

Abstract

This chapter applies the coherent mode framework of Chap. 5 to periodic focusing, where coherent space charge eigenmodes can be subject to parametrically driven, resonant instability as in the case of the well-known envelope instability. Their main characteristic is that they follow a half-integer resonance condition between a coherent eigenmode of oscillation and the periodic focussing – in contrast with the (also half-integer) single particle parametric resonances discussed in the mismatch context. The subject will be discussed here from various points of view: as Vlasov perturbation theory; in smooth approximation; using the nonlinear rms envelope equations; and finally with multiparticle simulation comparing 2D and 3D models. This chapter is particularly relevant to periodic lattices in linear high intensity accelerators, but in a variety of aspects also to circular accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that half-integer is relative to a linac focussing or a ring structure period; also integer cases cannot be excluded, but they are much weaker.

  2. 2.

    It is equally absent in the coherent betatron resonances of Chap. 8.

  3. 3.

    In [2] these modes where simply called space-charge induced instabilities, and the notion parametric was not used. The term parametric more precisely describes their nature; moreover it distinguishes them from the so-called “Gluckstern mode” instabilities (see Sect. 7.3.2.3) also found in [2], which are not parametric, but intrinsic to the non-monotonic KV-distribution.

  4. 4.

    The presence of such lower order terms does not mean lower order modes are included.

  5. 5.

    Following [2] this stopband is actually composed of several bands with gaps in between.

  6. 6.

    Precisely speaking, each branch splits further into two adjacent modes.

  7. 7.

    A historical side note: this instability – frequently called “Gluckstern mode” – was of major concern in the pioneering time of space charge studies for linacs in the 1970s, until it was later recognized as irrelevant for realistic beams.

  8. 8.

    Mentioned already in early simulations of a coasting waterbag beam in [17].

  9. 9.

    Noting that in a symmetric FODO-channel the slow and fast envelope modes are actually not separate modes.

  10. 10.

    With reference to linacs; long bunches as in synchrotrons or storage rings require different approaches in the third dimension.

  11. 11.

    Note that in this sum mode section the resonance condition is written using tunes without space charge, and the space charge shifts are absorbed in the correspondingly modified Δν coh, s of Eq. 7.5.

  12. 12.

    Here it is assumed that transverse tunes and emittances are identical, which is roughly the case in linacs.

  13. 13.

    Noting that in circular accelerators lattices a 90 phase advance condition is usually avoided for reasons of structural resonances.

References

  1. G.R. Lambertson, L.1. Laslett, L. Smith, IEEE Trans. Nucl. Sci. NS-24, 933 (1977)

    Google Scholar 

  2. I. Hofmann, L.J. Laslett, L. Smith, I. Haber, Part. Accel. 13, 145 (1983)

    Google Scholar 

  3. M.G. Tiefenback, D. Keefe, IEEE Trans. Nucl. Sci. 32, 2483 (1985)

    Article  ADS  Google Scholar 

  4. J. Struckmeier, M. Reiser, Part. Accel. 14, 227 (1984)

    Google Scholar 

  5. M. Reiser, Theory and Design of Charged Particle Beams, 2nd edn. (Wiley, Weinheim, 2008)

    Book  Google Scholar 

  6. F. Verhulst, in Mathematics of Complexity and Dynamical Systems, ed. by A.R. Meyers (Springer, New York, 2011), pp. 1251–1264

    Google Scholar 

  7. I. Hoveijn, Z. Angew. Math. Phys. 46, 384 (1995)

    Google Scholar 

  8. H. Okamoto, K. Yokoya, Nucl. Instrum. Methods Phys. Res. Sect. A 482, 51 (2002)

    Google Scholar 

  9. I. Hofmann, O. Boine-Frankenheim, Phys. Rev. Accel. Beams 20, 014202 (2017)

    Article  ADS  Google Scholar 

  10. L.J. Laslett, L. Smith, I. Haber, Comparison of Instability Theory with Simulation Results, in Proceedings of the Heavy Ion Fusion Workshop, Argonne National Laboratory, Argonne, Sept 1978, ANL-79-41, p. 321, Argonne (1978); also I. Haber, IEEE Trans. Nucl. Sci. NS-26, Vol. 3, 3090 (June 1979)

    Google Scholar 

  11. I. Hofmann, Phys. Rev. E 57, 4713 (1998)

    Article  ADS  Google Scholar 

  12. R.L. Gluckstern, in Proceedings of the Linac Conference, Fermilab, Batavia, 1970, p. 811

    Google Scholar 

  13. I. Hofmann, Part. Accel. 10, 253 (1980)

    Google Scholar 

  14. I. Hofmann, Phys. Fluids 23, 296 (1980)

    Article  ADS  Google Scholar 

  15. S.M. Lund, B. Bukh, Phys. Rev. ST Accel. Beams 7, 024801 (2004)

    Article  ADS  Google Scholar 

  16. C. Li, Y.L. Zhao, Phys. Rev. ST Accel. Beams 17, 124202 (2014)

    Article  ADS  Google Scholar 

  17. I. Hofmann, Transport and focusing of high intensity unneutralized beams, in Applied Particle Optics, Supplement 13C of Advances in Electronics and Electron Physics, ed. by A. Septier, p. 106 ff (1983)

    Google Scholar 

  18. T.P. Wangler, RF Linear Accelerators, 2nd ed. (Wiley-VCH, New York, 2008)

    Book  Google Scholar 

  19. C.K. Allen, T.P. Wangler, Phys. Rev. ST Accel. Beams 5, 124202 (2002)

    Article  ADS  Google Scholar 

  20. I. Hofmann, O. Boine-Frankenheim, Phys. Rev. Lett. 115, 204802 (2015)

    Article  ADS  Google Scholar 

  21. L. Groening, W. Barth, W. Bayer, G. Clemente, L. Dahl, P. Forck, P. Gerhard, I. Hofmann, M.S. Kaiser, M. Maier, S. Mickat, T. Milosic, D. Jeon, D. Uriot, Phys. Rev. Lett. 102, 234801 (2009)

    Article  ADS  Google Scholar 

  22. D. Jeon, J.H. Jang, H. Jin, Nucl. Instr. Methods A, 832, 43 (2016)

    Article  ADS  Google Scholar 

  23. O. Boine-Frankenheim, I. Hofmann, J. Struckmeier, Phys. Plasmas 23(9), 090705 (2016)

    Article  ADS  Google Scholar 

  24. I. Hofmann, O. Boine-Frankenheim, Phys. Rev. Lett. 118, 114803 (2017)

    Article  ADS  Google Scholar 

  25. M. Venturini, M. Reiser, Phys. Rev. Lett. 81, 96 (1998)

    Article  ADS  Google Scholar 

  26. S.Y. Lee, H. Okamoto, Phys. Rev. Lett. 80, 5133 (1998)

    Article  ADS  Google Scholar 

  27. M. Ikegami, S. Machida, T. Uesugi, Phys. Rev. ST Accel. Beams 2, 124201 (1999)

    Article  ADS  Google Scholar 

  28. Y.S. Yuan, O. Boine-Frankenheim, G. Franchetti, I. Hofmann, Phys. Rev. Lett. 118, 154801 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Hofmann, I. (2017). Coherent Parametric Instabilities. In: Space Charge Physics for Particle Accelerators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-319-62157-9_7

Download citation

Publish with us

Policies and ethics