Skip to main content

Essential Thrombocythemia

  • Chapter
  • First Online:
Precision Molecular Pathology of Myeloid Neoplasms

Part of the book series: Molecular Pathology Library ((MPLB,volume 12))

  • 1020 Accesses

Abstract

Essential thrombocythemia (ET) is a myeloproliferative neoplasm characterized by elevated peripheral blood platelet count and bone marrow megakaryocyte hyperplasia. Three driver mutations in JAK2, CALR, and MPL have been identified and result in these clinical findings via activation of the JAK/STAT pathway. These mutations are included in the diagnostic criteria for ET. Here, we not only focus on the molecular aspects of ET but also discuss the morphological, immunophenotypic, and clinical features of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiel J, Kvasnicka HM, Orazi A, et al. Essential thrombocythaemia. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2008. p. 48–50.

    Google Scholar 

  2. Epstein E, Goedel A. Hamorrhagischethrombo-zythamiebeivascularerschrumpfmilz (hemorrhagic thrombocythemia with a vascular, sclerotic spleen). Virchows Arch A Pathol Anat Histopathol. 1934;293:233–48.

    Article  Google Scholar 

  3. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi:10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  4. Srour SA, Devesa SS, Morton LM, et al. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the united states, 2001–12. Br J Haematol. 2016;174(3):382–96. doi:10.1111/bjh.14061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mesa RA, Miller CB, Thyne M, et al. Differences in treatment goals and perception of symptom burden between patients with myeloproliferative neoplasms (MPNs) and hematologists/oncologists in the United States: findings from the MPN landmark survey. Cancer. 2016. doi:10.1002/cncr.30325.

  6. Thiele J, Kvasnicka HM, Mullauer L, et al. Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood. 2011;117(21):5710–8. doi:10.1182/blood-2010-07-293761.

    Article  CAS  PubMed  Google Scholar 

  7. Barbui T, Thiele J, Passamonti F, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29(23):3179–84. doi:10.1200/JCO.2010.34.5298.

    Article  PubMed  Google Scholar 

  8. Gisslinger H, Jeryczynski G, Gisslinger B, et al. Clinical impact of bone marrow morphology for the diagnosis of essential thrombocythemia: comparison between the BCSH and the WHO criteria. Leukemia. 2016;30(5):1126–32. doi:10.1038/leu.2015.360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gianelli U, Vener C, Bossi A, et al. The European consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis. Mod Pathol Off J US Can Acad Pathol Inc. 2012;25(9):1193–202. doi:10.1038/modpathol.2012.87.

    Google Scholar 

  10. Chachoua I, Pecquet C, El-Khoury M, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35. doi:10.1182/blood-2015-11-681932.

    Article  CAS  PubMed  Google Scholar 

  11. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61. doi:10.1016/S0140-6736(05)71142-9.

    Article  CAS  PubMed  Google Scholar 

  12. James C, Ugo V, Le Couedic J-P, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi:10.1038/nature03546.

    Article  CAS  PubMed  Google Scholar 

  13. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi:10.1056/NEJMoa051113.

    Article  CAS  PubMed  Google Scholar 

  14. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;4:387–97. doi:10.1016/j.ccr.2005.03.023.

    Article  Google Scholar 

  15. Barbui T, Thiele J, Vannucchi AM, et al. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer J. 2015;5(8):e337. doi:10.1038/bcj.2015.64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scott LM, Scott MA, Campbell PJ, et al. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108:2435–7. doi:10.1182/blood-2006-04-018259.

    Article  CAS  PubMed  Google Scholar 

  17. Passamonti F, Rumi E, Daniela P, et al. Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood. 2006;107:3676–82. doi:10.1182/blood-2005-09-3826.

    Article  CAS  PubMed  Google Scholar 

  18. Hussein K, Bock O, Theophile K, von Neuhoff N, et al. JAK2(V617F) allele burden discriminates essential thrombocythemia from a subset of prefibrotic-stage primary myelofibrosis. Exp Hematol. 2009;37(10):1186–1193.e7. doi:10.1016/j.exphem.2009.07.005.

    Article  CAS  PubMed  Google Scholar 

  19. Antonioli E, Guglielmelli P, Poli G, et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica. 2008;93(1):41–8. doi:10.3324/haematol.11653.

    Article  CAS  PubMed  Google Scholar 

  20. Tefferi A, Strand JJ, Lasho TL, et al. Bone marrow JAK2V617F allele burden and clinical correlates in polycythemia vera. Leukemia. 2007;21(9):2074–5.

    Article  CAS  PubMed  Google Scholar 

  21. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110(3):840–6. doi:10.1182/blood-2006-12-064287.

    Article  CAS  PubMed  Google Scholar 

  22. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. NEJM. 2013;369(25):2391–405. doi:10.1056/NEJMoa1312542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi:10.1056/NEJMoa1311347.

    Article  CAS  PubMed  Google Scholar 

  24. Pietra D, Rumi E, Ferretti VV, Di Buduo CA, et al. Differential clinical effects of different mutations subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30(2):431–8. doi:10.1038/leu.2015.277.

    Article  CAS  PubMed  Google Scholar 

  25. Palandri F, Latagliata R, Polverelli N, et al. Mutations and long-term outcome of 217 young patients with essential thrombocythemia or early primary myelofibrosis. Leukemia. 2015;29(6):1344–9. doi:10.1038/leu.2015.87.

    Article  CAS  PubMed  Google Scholar 

  26. Rotunno G, Pacilli A, Artusi V, et al. Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: a study on 359 patients of the AGIMM group. Am J Hematol. 2016;91(7):681–6. doi:10.1002/ajh.24377.

    Article  CAS  PubMed  Google Scholar 

  27. Milosevic Feenstra JD, Nivarthi H, Gisslinger H, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127(3):325–32. doi:10.1182/blood-2015-07-661835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. ST O, Simonds EF, Jones C, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010;116:988–92. doi:10.1182/blood-2010-02-270108.

    Article  Google Scholar 

  29. Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8. doi:10.1182/blood-2013-11-537167.

    Article  CAS  PubMed  Google Scholar 

  30. Tefferi A, Pardanani A, Lim KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia. 2009;23(5):905–11. doi:10.1038/leu.2009.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delic S, Rose D, Kern W, et al. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera. Br J Haematol. 2016. doi:10.1111/bjh.14269.

  32. Landgren O, Goldin L, Kristinsson S, et al. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112:2199–204. doi:10.1182/blood-2008-03-143602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olcaydu D, Harutyunyan A, Jager R, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41:450–4. doi:10.1038/ng.341.

    Article  CAS  PubMed  Google Scholar 

  34. Pardanani A, Fridley BL, Lasho TL, et al. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood. 2008;111:2785–9. doi:10.1182/blood-2007-06-095703.

    Article  CAS  PubMed  Google Scholar 

  35. Hinds DA, Barnholt KE, Mesa RA, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128:1121–8. doi:10.1182/blood-2015-06-652941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tapper W, Jones AV, Kralovics R, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015;6:6691. doi:10.1038/ncomms7691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbui T, Vannucchi AM, Buxhofer-Ausch V, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5:e369. doi:10.1038/bcj.2015.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haider M, Gangat N, Lasho T, et al. Validation of the revised international prognostic score of thrombosis for essential thrombocythemia (IPSET-thrombosis) in 585 mayo clinic patients. Am J Hematol. 2016;91(4):390–4. doi:10.1002/ajh.24293.

    Article  PubMed  Google Scholar 

  39. Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–13. doi:10.1182/blood-2014-05-579136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5:e366. doi:10.1038/bcj.2015.95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2015 update on diagnosis, risk-stratification and management. Am J Hematol. 2015;90(2):162–73. doi:10.1002/ajh.23895.

    Article  CAS  PubMed  Google Scholar 

  42. Quintás-Cardama A, Abdel-Wahab O, Manshouri T, et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon α-2a. Blood. 2013;122:893–901. doi:10.1182/blood-2012-07-44201.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cassinat B, Verger E, Kiladjian JJ. Interferon alfa therapy in CALR-mutated essential thrombocythemia. N Engl J Med. 2014;371(2):188–9. doi:10.1056/NEJMc1401255.

    Article  CAS  PubMed  Google Scholar 

  44. Landolfi R, Marchioli R, Kutti J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24. doi:10.1056/NEJMoa035572.

    Article  CAS  PubMed  Google Scholar 

  45. Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121(10):1720–8. doi:10.1182/blood-2012-07-443770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verstovsek S, Passamonti F, Rambaldi A, et al. Long-term results from a phase II open-label study of ruxolitinib in patients with essential thrombocythemia refractory to or intolerant of hydroxyurea. Blood. 2014;124:184.

    Article  Google Scholar 

  47. Tefferi A, Wassie EA, Lasho TL, et al. Calreticulin mutations and long-term survival in essential thrombocythemia. Leukemia. 2014;(12):2300–3. doi:10.1038/leu.2014.148.

  48. Jones AV, Cross NC. Inherited predisposition to myeloproliferative neoplasms. Ther Adv Hematol. 2013;4:237–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Recommended Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to April A. Ewton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ewton, A.A., Donohue, R.E. (2018). Essential Thrombocythemia. In: Chang, CC., Ohgami, R. (eds) Precision Molecular Pathology of Myeloid Neoplasms. Molecular Pathology Library, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-62146-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62146-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62144-9

  • Online ISBN: 978-3-319-62146-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics