Skip to main content

Existing and Emerging Molecular Technologies in Myeloid Neoplasms

  • Chapter
  • First Online:
  • 1015 Accesses

Part of the book series: Molecular Pathology Library ((MPLB,volume 12))

Abstract

Insight into the genetic aberrations of myeloid neoplasms has been accomplished through the application of evolving technology and laboratory techniques. Techniques that have been employed for decades include karyotype and fluorescent in situ hybridization have been supplemented by methods such as polymerase chain reaction, Sanger sequencing, and deoxyribonucleic acid (DNA) microarrays that have provided additional insight into the genetic underpinnings of myeloid neoplasia. Recent advances in massively parallel sequencing permit unprecedented insight into the genetic abnormalities involved in the neoplastic process. New technologies, such as long-read sequencing technologies, are in development and offer the possibility of real-time sequencing of single molecules that could offer additional insights. Application of these techniques to detect minimal residual disease and single-cell sequencing is offering insight into the disease processes, but the integration of such methods into routine practice is currently unclear. Understanding the nuances of the analytical methods that are used to inform the genetic basis of myeloid neoplasia is critical for interpreting the results of clinical and scientific investigations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smith HO, Wilcox KW. A restriction enzyme from Hemophilus influenzae. I Purification and general properties. J Mol Biol. 1970;51(2):379–91.

    Article  CAS  PubMed  Google Scholar 

  2. Price PM, Hirschhorn K. In situ hybridization of chromosome loci. Fed Proc. 1975;34(13):2227–32.

    CAS  PubMed  Google Scholar 

  3. Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986;83(9):2934–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977;74(2):560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartlett JM, Stirling D. A short history of the polymerase chain reaction. Methods Mol Biol. 2003;226:3–6. doi:10.1385/1-59259-384-4:3.

    CAS  PubMed  Google Scholar 

  8. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986;324(6093):163–6. doi:10.1038/324163a0.

    Article  CAS  PubMed  Google Scholar 

  9. Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem. 1989;264(11):6427–37.

    CAS  PubMed  Google Scholar 

  10. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.

    Article  CAS  PubMed  Google Scholar 

  11. Dryja TP, Rapaport JM, Joyce JM, Petersen RA. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci U S A. 1986;83(19):7391–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lübbert M, Mirro J, Miller CW, Kahan J, Isaac G, Kitchingman G, Mertelsmann R, Herrmann F, McCormick F, Koeffler HP. N-ras gene point mutations in childhood acute lymphocytic leukemia correlate with a poor prognosis. Blood. 1990;75(5):1163–9.

    PubMed  Google Scholar 

  13. Iggo R, Gatter K, Bartek J, Lane D, Harris AL. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet. 1990;335(8691):675–9.

    Article  CAS  PubMed  Google Scholar 

  14. Komminoth P, Kunz EK, Matias-Guiu X, Hiort O, Christiansen G, Colomer A, Roth J, Heitz PU. Analysis of RET protooncogene point mutations distinguishes heritable from nonheritable medullary thyroid carcinomas. Cancer. 1995;76(3):479–89.

    Article  CAS  PubMed  Google Scholar 

  15. Claas EC, Melchers WJ, van der Linden HC, Lindeman J, Quint WG. Human papillomavirus detection in paraffin-embedded cervical carcinomas and metastases of the carcinomas by the polymerase chain reaction. Am J Pathol. 1989;135(4):703–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Feinmesser R, Miyazaki I, Cheung R, Freeman JL, Noyek AM, Dosch HM. Diagnosis of nasopharyngeal carcinoma by DNA amplification of tissue obtained by fine-needle aspiration. N Engl J Med. 1992;326(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  17. Melo JV, Gordon DE, Cross NC, Goldman JM. The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood. 1993;81(1):158–65.

    CAS  PubMed  Google Scholar 

  18. Dobrovic A, Trainor KJ, Morley AA. Detection of the molecular abnormality in chronic myeloid leukemia by use of the polymerase chain reaction. Blood. 1988;72(6):2063–5.

    CAS  PubMed  Google Scholar 

  19. Thompson JD, Brodsky I, Yunis JJ. Molecular quantification of residual disease in chronic myelogenous leukemia after bone marrow transplantation. Blood. 1992;79(6):1629–35.

    CAS  PubMed  Google Scholar 

  20. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–302.

    Article  CAS  PubMed  Google Scholar 

  21. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  22. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Creighton HB, McClintock B. A correlation of cytological and Genetical crossing-over in Zea Mays. Proc Natl Acad Sci U S A. 1931;17(8):492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coe E, Kass LB. Proof of physical exchange of genes on the chromosomes. Proc Natl Acad Sci U S A. 2005;102(19):6641–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin CL, Warburton D. Detection of chromosomal aberrations in clinical practice: from Karyotype to genome sequence. Annu Rev Genomics Hum Genet. 2015;16:309–26.

    Article  CAS  PubMed  Google Scholar 

  26. Marcucci G, Mrozek K, Bloomfield CD. Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr Opin Hematol. 2005;12(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  27. Van Den Berghe H, Louwagie A, Broeckaert-Van Orshoven A, David G, Verwilghen R, Michaux JL, Sokal G. Chromosome abnormalities in acute promyelocytic leukemia (APL). Cancer. 1979;43(2):558–62.

    Article  Google Scholar 

  28. Berger R, Bernheim A, Daniel MT, Valensi F, Flandrin G. Karyotype and cell phenotypes in primary acute leukemias. Blood Cells. 1981;7(2):287–92.

    CAS  PubMed  Google Scholar 

  29. Sakurai M, Hayata I, Sandberg AA. Prognostic value of chromosomal findings in Ph1-positive chronic myelocytic leukemia. Cancer Res. 1976;36(2 Pt 1):313–8.

    CAS  PubMed  Google Scholar 

  30. Meisner L, Inhorn SL, Nielsen P. Karyotype evolution of cells with the Philadelphia chromosome. Acta Cytol. 1970;14(4):192–9.

    CAS  PubMed  Google Scholar 

  31. Grimwade D, Walker H, Oliver F, Wheatley K, Clack R, Burnett A, Goldstone A. What happens subsequently in AML when cytogenetic abnormalities persist at bone marrow harvest? Results of the 10th UK MRC AML trial. Medical Research Council Leukaemia Working Parties. Bone Marrow Transpl. 1997;19(11):1117–23.

    Article  CAS  Google Scholar 

  32. Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1982;79(14):4381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Landstrom AP, Tefferi A. Fluorescent in situ hybridization in the diagnosis, prognosis, and treatment monitoring of chronic myeloid leukemia. Leuk Lymphoma. 2006;47(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  34. Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S, et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA. 2011;305(15):1577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang XC, Quesada MA, Mathies RA. DNA sequencing using capillary array electrophoresis. Anal Chem. 1992;64(18):2149–54.

    Article  CAS  PubMed  Google Scholar 

  36. Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hood LE, Hunkapiller MW, Smith LM. Automated DNA sequencing and analysis of the human genome. Genomics. 1987;1(3):201–12.

    Article  CAS  PubMed  Google Scholar 

  38. Zimmermann J, Voss H, Schwager C, Stegemann J, Ansorge W. Automated Sanger dideoxy sequencing reaction protocol. FEBS Lett. 1988;233(2):432–6.

    Article  CAS  PubMed  Google Scholar 

  39. Hood L, Rowen L. The human genome project: big science transforms biology and medicine. Genome Med. 2013;5(9):79.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae rd. Science. 1995;269(5223):496–512.

    Article  CAS  PubMed  Google Scholar 

  41. Venter JC, Adams MD, Sutton GG, Kerlavage AR, Smith HO, Hunkapiller M. Shotgun sequencing of the human genome. Science. 1998;280(5369):1540–2.

    Article  CAS  PubMed  Google Scholar 

  42. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    Article  CAS  PubMed  Google Scholar 

  43. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al.; Consortium IHGS (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921.

    Google Scholar 

  44. Schnittger S, Bacher U, Kern W, Alpermann T, Haferlach C, Haferlach T. Prognostic impact of FLT3-ITD load in NPM1 mutated acute myeloid leukemia. Leukemia. 2011;25(8):1297–304. doi:10.1038/leu.2011.97.

    Article  CAS  PubMed  Google Scholar 

  45. Kern W, Haferlach C, Haferlach T, Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Cancer. 2008;112(1):4–16.

    Article  CAS  PubMed  Google Scholar 

  46. Jobbagy Z, van Atta R, Murphy KM, Eshleman JR, Gocke CD. Evaluation of the Cepheid GeneXpert BCR-ABL assay. J Mol Diagn. 2007;9(2):220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin JA, O’Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120(14):2826–35.

    Article  CAS  PubMed  Google Scholar 

  48. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 concerted action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–28.

    Article  PubMed  CAS  Google Scholar 

  49. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17(6):1013–34.

    Article  PubMed  CAS  Google Scholar 

  50. Santamaria C, Chillon MC, Fernandez C, Martin-Jimenez P, Balanzategui A, Garcia Sanz R, San Miguel JF, Gonzalez MG. Using quantification of the PML-RARalpha transcript to stratify the risk of relapse in patients with acute promyelocytic leukemia. Haematologica. 2007;92(3):315–22.

    Article  CAS  PubMed  Google Scholar 

  51. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe against cancer program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

  52. Kafatos FC, Jones CW, Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979;7(6):1541–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Southern EM. DNA microarrays. History and overview. Methods Mol Biol. 2001;170:1–15.

    CAS  PubMed  Google Scholar 

  54. Hoheisel JD. (1994) application of hybridization techniques to genome mapping and sequencing. Trends Genet. 1994 Mar;10(3):79–83.

    Article  CAS  PubMed  Google Scholar 

  55. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–51.

    Article  CAS  PubMed  Google Scholar 

  56. Hemmat M, Chen W, Anguiano A, Naggar ME, Racke FK, Jones D, et al. Submicroscopic deletion of 5q involving tumor suppressor genes (CTNNA1, HSPA9) and copy neutral loss of heterozygosity associated with TET2 and EZH2 mutations in a case of MDS with normal chromosome and FISH results. Mol Cytogenet. 2014;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cheung KJ, Rogic S, Ben-Neriah S, Boyle M, Connors JM, Gascoyne RD, Horsman DE. SNP analysis of minimally evolved t(14;18)(q32;q21)-positive follicular lymphomas reveals a common copy-neutral loss of heterozygosity pattern. Cytogenet Genome Res. 2012;136(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  58. Greisman HA, Hoffman NG, Yi HS. Rapid high-resolution mapping of balanced chromosomal rearrangements on tiling CGH arrays. J Mol Diagn. 2011;13(6):621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309(5741):1728–32.

    Article  CAS  PubMed  Google Scholar 

  60. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol. 2000;18(6):630–4.

    Article  CAS  PubMed  Google Scholar 

  61. Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.

    Article  CAS  PubMed  Google Scholar 

  62. Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4):413–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gullapalli RR, Lyons-Weiler M, Petrosko P, Dhir R, Becich MJ, LaFramboise WA. Clinical integration of next-generation sequencing technology. Clin Lab Med. 2012;32(4):585–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vosberg S, Herold T, Hartmann L, Neumann M, Opatz S, Metzeler KH, et al. Close correlation of copy number aberrations detected by next-generation sequencing with results from routine cytogenetics in acute myeloid leukemia. Genes Chromosomes Cancer. 2016;55(7):553–67.

    Article  CAS  PubMed  Google Scholar 

  65. Pritchard CC, Salipante SJ, Koehler K, Smith C, Scroggins S, Wood B, et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and Gene rearrangement in clinical cancer specimens. J Mol Diagn 2014 Jan. 2013;16(1):56–67.

    Google Scholar 

  66. Richter BG, Sexton DP. Managing and analyzing next-generation sequence data. PLoS Comput Biol. 2009;5(6):e1000369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Batley J, Edwards D. Genome sequence data: management, storage, and visualization. BioTechniques. 2009;46(5):333–334, 336.

    Article  CAS  PubMed  Google Scholar 

  68. Sinard JH, Powell SZ, Karcher DS. Pathology training in informatics: evolving to meet a growing need. Arch Pathol Lab Med. 2014;138(4):505–11.

    Article  PubMed  Google Scholar 

  69. Haspel RL, Olsen RJ, Berry A, Hill CE, Pfeifer JD, Schrijver I, Kaul KL. Progress and potential: training in genomic pathology. Arch Pathol Lab Med. 2014;138(4):498–504.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Overby CL, Kohane I, Kannry JL, Williams MS, Starren J, Bottinger E, Gottesman O, Denny JC, Weng C, Tarczy-Hornoch P, Hripcsak G. Opportunities for genomic clinical decision support interventions. Genet Med. 2013;15(10):817–23.

    Article  PubMed  Google Scholar 

  71. Gray SW, Hicks-Courant K, Cronin A, Rollins BJ. Weeks JC (2014) Physicians’ attitudes about multiplex tumor genomic testing. J Clin Oncol. 2014 May 1;32(13):1317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Starren J, Williams MS, Bottinger EP. Crossing the omic chasm: a time for omic ancillary systems. JAMA. 2013;309(12):1237–8.

    Article  CAS  PubMed  Google Scholar 

  73. Guo J, Xu N, Li Z, Zhang S, Wu J, Kim DH, et al. Four-color DNA sequencing with 3′-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc Natl Acad Sci U S A. 2008;105(27):9145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ju J, Kim DH, Bi L, Meng Q, Bai X, Li Z, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci U S A. 2006;103(52):19635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008;36(16):e105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40(10):e72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring bias in sequence data. Genome Biol. 2013;14(5):R51.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12(2):R18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30(5):434–9.

    Article  CAS  PubMed  Google Scholar 

  81. Kircher M, Heyn P, Kelso J. Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics. 2011;12:382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.

    Article  CAS  PubMed  Google Scholar 

  83. Yeo ZX, Chan M, Yap YS, Ang P, Rozen S, Lee AS. Improving indel detection specificity of the ion torrent PGM benchtop sequencer. PLoS One. 2012;7(9):e45798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zeng F, Jiang R, Chen T. PyroHMMsnp: an SNP caller for ion torrent and 454 sequencing data. Nucleic Acids Res. 2013;41(13):e136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Loman NJ, Quinlan AR. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics. 2014;30(23):3399–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Merriman B, Ion Torrent R, Team D, Rothberg JM. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. 2012;33(23):3397–417.

    Article  CAS  Google Scholar 

  87. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6(9):677–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abel HJ, Al-Kateb H, Cottrell CE, Bredemeyer AJ, Pritchard CC, Grossmann AH, Wallander ML, Pfeifer JD, Lockwood CM, Duncavage EJ. Detection of gene rearrangements in targeted clinical next-generation sequencing. J Mol Diagn. 2014;16(4):405–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J, et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat Methods. 2011;8(8):652–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108(4):1513–8.

    Article  CAS  PubMed  Google Scholar 

  91. Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Res. 2010;20(9):1165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang Y, Yang Q, Wang Z. The evolution of nanopore sequencing. Front Genet. 2014;5:449.

    PubMed  Google Scholar 

  93. Shin SC, Ahn do H, Kim SJ, Lee H, Oh TJ, Lee JE, Park H. Advantages of single-molecule real-time sequencing in high-GC content genomes. PLoS One. 2013;8(7):e68824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vaughn CP, Robles J, Swensen JJ, Miller CE, Lyon E, Mao R, Bayrak-Toydemir P, Samowitz WS. Clinical analysis of PMS2: mutation detection and avoidance of pseudogenes. Hum Mutat. 2010;31(5):588–93.

    CAS  PubMed  Google Scholar 

  95. Hansen MF, Neckmann U, Lavik LA, Vold T, Gilde B, Toft RK, Sjursen W. A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes. Mol Genet Genomic Med. 2014;2(2):186–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. KF A, Underwood JG, Lee L, Wong WH. Improving PacBio long read accuracy by short read alignment. PLoS One. 2012;7(10):e46679.

    Article  CAS  Google Scholar 

  97. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.

    Article  CAS  PubMed  Google Scholar 

  98. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19(R2):R227–40.

    Article  CAS  PubMed  Google Scholar 

  99. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, et al. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med. 2011;365(8):709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK. The origin of the Haitian cholera outbreak strain. N Engl J Med. 2011;364(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  101. Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M, Hon L, et al. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 2014;24(4):688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Okoniewski MJ, Meienberg J, Patrignani A, Szabelska A, Matyas G, Schlapbach R. Precise breakpoint localization of large genomic deletions using PacBio and Illumina next-generation sequencers. BioTechniques. 2013;54(2):98–100.

    Article  CAS  PubMed  Google Scholar 

  103. Ritz A, Bashir A, Sindi S, Hsu D, Hajirasouliha I, Raphael BJ. Characterization of structural variants with single molecule and hybrid sequencing approaches. Bioinformatics. 2014;30(24):3458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012;30(7):693–700. doi:10.1038/nbt.2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Archer J, Weber J, Henry K, Winner D, Gibson R, Lee L, et al. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism. PLoS One. 2012;7(11):e49602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jiao X, Zheng X, Ma L, Kutty G, Gogineni E, Sun Q, et al. A benchmark study on error assessment and quality control of CCS reads derived from the PacBio RS. J Data Mining Genomics Proteomics. 2013;4(3):1–5.

    Article  CAS  Google Scholar 

  107. Stoddart D, Heron AJ, Klingelhoefer J, Mikhailova E, Maglia G, Bayley H. Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. Nano Lett. 2010;10(9):3633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol. 2012;30(4):349–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tsutsui M, He Y, Furuhashi M, Rahong S, Taniguchi M, Kawai T. Transverse electric field dragging of DNA in a nanochannel. Sci Rep. 2012;2:394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Singer A, McNally B, Torre RD, Meller A. DNA sequencing by nanopore-induced photon emission. Methods Mol Biol. 2012;870:99–114.

    Article  CAS  PubMed  Google Scholar 

  111. Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH. Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A. 2010;107(37):16060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Laszlo AH, Derrington IM, Ross BC, Brinkerhoff H, Adey A, Nova IC, Craig JM, Langford KW, Samson JM, Daza R, Doering K, Shendure J, Gundlach JH. Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol. 2014;32(8):829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J. O’Grady J (2014) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol. 2015 Mar;33(3):296–300.

    Article  CAS  PubMed  Google Scholar 

  114. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. Improved data analysis for the MinION nanopore sequencer. Nat Methods. 2015;12:351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mikheyev AS, Tin MM. A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour. 2014;14(6):1097–102.

    Article  CAS  PubMed  Google Scholar 

  116. O’Donnell CR, Wang H, Dunbar WB. Error analysis of idealized nanopore sequencing. Electrophoresis. 2013;34(15):2137–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Cavelier L, Ameur A, Haggqvist S, Hoijer I, Cahill N, Olsson-Stromberg U, Hermanson M. Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing. BMC Cancer. 2015;15:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kastner R, Zopf A, Preuner S, Proll J, Niklas N, Foskett P, Valent P, Lion T, Gabriel C. Rapid identification of compound mutations in patients with Philadelphia-positive leukaemias by long-range next generation sequencing. Eur J Cancer. 2014;50(4):793–800.

    Article  CAS  PubMed  Google Scholar 

  119. Grossmann V, Kohlmann A, Klein HU, Schindela S, Schnittger S, Dicker F, et al. Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leukemia. 2011;25(4):671–80.

    Article  CAS  PubMed  Google Scholar 

  120. Baer C, Kern W, Koch S, Nadarajah N, Schindela S, Meggendorfer M, Haferlach C, Haferlach T. Ultra-deep sequencing leads to earlier and more sensitive detection of the tyrosine kinase inhibitor resistance mutation T315I in chronic myeloid leukemia. Haematologica. 2016;101(7):830–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. 2003;100(15):8817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  PubMed Central  Google Scholar 

  124. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, Ehninger G. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(10):4011–20.

    Article  CAS  PubMed  Google Scholar 

  125. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 2008;18(7):1051–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huang YF, Chen SC, Chiang YS, Chen TH, Chiu KP. Palindromic sequence impedes sequencing-by-ligation mechanism. BMC Syst Biol. 2012;6(Suppl 2):S10.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tuna M, Amos CI. Genomic sequencing in cancer. Cancer Lett. 2013;340(2):161–70.

    Article  CAS  PubMed  Google Scholar 

  128. Kim T, Yoshida K, Kim YK, Tyndel MS, Park HJ, Choi SH, et al. Clonal dynamics in a single AML case tracked for 9 years reveals the complexity of leukemia progression. Leukemia. 2016;30(2):295–302.

    CAS  PubMed  Google Scholar 

  129. Farrar JE, Schuback HL, Ries RE, Wai D, Hampton OA, Trevino LR, et al. Genomic profiling of pediatric acute myeloid leukemia reveals a changing mutational landscape from disease diagnosis to relapse. Cancer Res. 2016;76(8):2197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Clark MJ, Chen R, Lam HY, Karczewski KJ, Euskirchen G, Butte AJ, Snyder M. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol. 2011;29(10):908–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wooderchak-Donahue WL, O’Fallon B, Furtado LV, Durtschi JD, Plant P, Ridge PG, et al. A direct comparison of next generation sequencing enrichment methods using an aortopathy gene panel- clinical diagnostics perspective. BMC Med Genet. 2012;5:50.

    CAS  Google Scholar 

  132. Shiba N, Yoshida K, Shiraishi Y, Okuno Y, Yamato G, Hara Y, et al. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br J Haematol. 2016;175(3):476–89.

    Article  CAS  PubMed  Google Scholar 

  133. Masetti R, Castelli I, Astolfi A, Bertuccio SN, Indio V, Togni M, Belotti T, Serravalle S, Tarantino G, Zecca M, Pigazzi M, Basso G, Pession A. Locatelli F (2016) genomic complexity and dynamics of clonal evolution in childhood acute myeloid leukemia studied with whole-exome sequencing. Oncotarget. 2016 Aug 30;7(35):56746–57.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cottrell CE, Al-Kateb H, Bredemeyer AJ, Duncavage EJ, Spencer DH, et al. Validation of a next-generation sequencing assay for clinical molecular oncology. J Mol Diagn. 2014;16(1):89–105.

    Article  CAS  PubMed  Google Scholar 

  135. Tsongalis GJ, Peterson JD, de Abreu FB, Tunkey CD, Gallagher TL, Strausbaugh LD, et al. Routine use of the ion torrent AmpliSeq™ cancer hotspot panel for identification of clinically actionable somatic mutations. Clin Chem Lab Med. 2014;52(5):707–14.

    Article  CAS  PubMed  Google Scholar 

  136. Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA, Handal B, et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J Mol Diagn. 2013;15(5):607–22.

    Article  CAS  PubMed  Google Scholar 

  137. Beadling C, Neff TL, Heinrich MC, Rhodes K, Thornton M, Leamon J, Andersen M, Corless CL. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J Mol Diagn. 2013;15(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  138. Hadd AG, Houghton J, Choudhary A, Sah S, Chen L, Marko AC, et al. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J Mol Diagn. 2013;15(2):234–47.

    Article  CAS  PubMed  Google Scholar 

  139. Escaramís G, Tornador C, Bassaganyas L, Rabionet R, Tubio JM, Martínez-Fundichely A, et al. PeSV-fisher: identification of somatic and non-somatic structural variants using next generation sequencing data. PLoS One. 2013;8(5):e63377.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, Coe BP, Quinlan AR, Nickerson DA, Eichler EE, Project NES. Copy number variation detection and genotyping from exome sequence data. Genome Res. 2012;22(8):1525–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Gorlich D, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686–98.

    Article  CAS  PubMed  Google Scholar 

  143. Kluk MJ, Lindsley RC, Aster JC, Lindeman NI, Szeto D, Hall D, Kuo FC. Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies. J Mol Diagn. 2016;18(4):507–15.

    Article  CAS  PubMed  Google Scholar 

  144. McKerrell T, Moreno T, Ponstingl H, Bolli N, Dias JM, Tischler G, et al. Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood. 2016;128(1):e1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Grasso C, Butler T, Rhodes K, Quist M, Neff TL, Moore S, Tomlins SA, Reinig E, Beadling C, Andersen M. Corless CL (2015) assessing copy number alterations in targeted, amplicon-based next-generation sequencing data. J Mol Diagn. 2015 Jan;17(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  146. Kadri S, Zhen CJ, Wurst MN, Long BC, Jiang ZF, Wang YL, Furtado LV, Segal JP. Amplicon Indel hunter is a novel bioinformatics tool to detect large somatic insertion/deletion mutations in amplicon-based next-generation sequencing data. J Mol Diagn. 2015;17(6):635–43.

    Article  CAS  PubMed  Google Scholar 

  147. Vidriales MB, Perez-Lopez E, Pegenaute C, Castellanos M, Perez JJ, Chandia M, et al. Minimal residual disease evaluation by flow cytometry is a complementary tool to cytogenetics for treatment decisions in acute myeloid leukaemia. Leuk Res. 2016;40:1–9.

    Article  PubMed  Google Scholar 

  148. Zhou Y, Othus M, Araki D, Wood BL, Radich JP, Halpern AB, et al. Pre- and post-transplant quantification of measurable (‘minimal’) residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia. 2016;30(7):1456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Duployez N, Nibourel O, Marceau-Renaut A, Willekens C, Helevaut N, Caillault A, et al. Minimal residual disease monitoring in t(8;21) acute myeloid leukemia based on RUNX1-RUNX1T1 fusion quantification on genomic DNA. Am J Hematol. 2014;89(6):610–5.

    Article  CAS  PubMed  Google Scholar 

  150. Kohlmann A, Klein HU, Weissmann S, Bresolin S, Chaplin T, Cuppens H, et al. The Interlaboratory RObustness of next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia. 2011;25(12):1840–8.

    Article  CAS  PubMed  Google Scholar 

  151. Grossmann V, Roller A, Klein HU, Weissmann S, Kern W, Haferlach C, Dugas M, Haferlach T, Schnittger S, Kohlmann A. Robustness of amplicon deep sequencing underlines its utility in clinical applications. J Mol Diagn. 2013;15(4):473–84.

    Article  CAS  PubMed  Google Scholar 

  152. Salipante SJ, Fromm JR, Shendure J, Wood BL, Wu D. Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing. Mod Pathol. 2014;27(11):1438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kohlmann A, Nadarajah N, Alpermann T, Grossmann V, Schindela S, Dicker F, et al. Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease. Leukemia. 2014;28(1):129–37.

    Article  CAS  PubMed  Google Scholar 

  154. Malmberg EB, Stahlman S, Rehammar A, Samuelsson T, Alm SJ, Kristiansson E, et al. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next generation sequencing. Eur J Haematol. 2017;98(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  155. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, et al. Group UKNCRIAW. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374(5):422–433.

    Google Scholar 

  156. Bartram J, Mountjoy E, Brooks T, Hancock J, Williamson H, Wright G, Moppett J, Goulden N, Hubank M. Accurate sample assignment in a multiplexed, ultrasensitive, high-throughput sequencing assay for minimal residual disease. J Mol Diagn. 2016;18(4):494–506.

    Article  CAS  PubMed  Google Scholar 

  157. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Wong TN, Miller CA, Klco JM, Petti A, Demeter R, Helton NM, et al. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML. Blood. 2016;127(7):893–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schmitt MW, Fox EJ, Prindle MJ, Reid-Bayliss KS, True LD, Radich JP, Loeb LA. Sequencing small genomic targets with high efficiency and extreme accuracy. Nat Methods. 2015;12(5):423–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Young AL, Wong TN, Hughes AE, Heath SE, Ley TJ, Link DC, Druley TE. Quantifying ultra-rare pre-leukemic clones via targeted error-corrected sequencing. Leukemia. 2015;29(7):1608–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hiatt JB, Pritchard CC, Salipante SJ, O’Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 2013;23(5):843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hokland P, Ommen HB, Mule MP, Hourigan CS. Advancing the minimal residual disease concept in acute myeloid leukemia. Semin Hematol. 2015;52(3):184–92.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nat Rev Clin Oncol. 2013;10(8):460–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat med. 014 Dec. 2014;20(12):1472–8.

    CAS  Google Scholar 

  167. Babayan A, Alawi M, Gormley M, Muller V, Wikman H, McMullin RP, et al. Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells. Oncotarget. 2016; doi:10.18632/oncotarget.10701. [Epub ahead of print].

  168. Sabina J, Leamon JH. Bias in whole genome amplification: causes and considerations. Methods Mol Biol. 2015;1347:15–41.

    Article  CAS  PubMed  Google Scholar 

  169. Pugh TJ, Delaney AD, Farnoud N, Flibotte S, Griffith M, Li HI, Qian H, Farinha P, Gascoyne RD, Marra MA. Impact of whole genome amplification on analysis of copy number variants. Nucleic Acids Res. 2008;36(13):e80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Paguirigan AL, Smith J, Meshinchi S, Carroll M, Maley C, Radich JP. Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci Transl Med. 2015;7(281):281re282.

    Article  CAS  Google Scholar 

  171. Silva FP, Swagemakers SM, Erpelinck-Verschueren C, Wouters BJ, Delwel R, Vrieling H, van der Spek P, Valk PJ, Giphart-Gassler M. Gene expression profiling of minimally differentiated acute myeloid leukemia: M0 is a distinct entity subdivided by RUNX1 mutation status. Blood. 2009;114(14):3001–7.

    Article  CAS  PubMed  Google Scholar 

  172. Bullinger L, Rucker FG, Kurz S, Du J, Scholl C, Sander S, Corbacioglu A, Lottaz C, Krauter J, Frohling S, Ganser A, Schlenk RF, Dohner K, Pollack JR, Dohner H. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood. 2007;110(4):1291–300.

    Article  CAS  PubMed  Google Scholar 

  173. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell. 2015;163(7):1663–77.

    Article  CAS  PubMed  Google Scholar 

  174. Yan P, Frankhouser D, Murphy M, Tam HH, Rodriguez B, Curfman J, et al. Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood. 2012;120(12):2466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Metzeler KH, Heilmeier B, Edmaier KE, Rawat VP, Dufour A, Dohner K, et al. High expression of lymphoid enhancer-binding factor-1 (LEF1) is a novel favorable prognostic factor in cytogenetically normal acute myeloid leukemia. Blood. 2012;120(10):2118–26.

    Article  CAS  PubMed  Google Scholar 

  176. Kuhnl A, Valk PJ, Sanders MA, Ivey A, Hills RK, Mills KI, et al. Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia. Blood. 2015;125(19):2985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. de Jonge HJ, Valk PJ, Veeger NJ, ter Elst A, den Boer ML, Cloos J, et al. High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood. 2010;116(10):1747–54.

    Article  PubMed  CAS  Google Scholar 

  178. Piazza R, Cecchetti C, Pirola A, Donandoni C, Fontana D, Mezzatesta C, et al. RNA-seq is a valuable complement of conventional diagnostic tools in newly diagnosed AML patients. Am J Hematol. 2015;90(12):E227–8.

    Article  PubMed  Google Scholar 

  179. Panagopoulos I, Gorunova L, Zeller B, Tierens A, Heim S. Cryptic FUS-ERG fusion identified by RNA-sequencing in childhood acute myeloid leukemia. Oncol Rep. 2013;30(6):2587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhou JB, Zhang T, Wang BF, Gao HZ, Xu X. Identification of a novel gene fusion RNF213SLC26A11 in chronic myeloid leukemia by RNA-Seq. Mol Med Rep. 2013;7(2):591–7.

    Article  CAS  PubMed  Google Scholar 

  181. Guglielmelli P, Bisognin A, Saccoman C, Mannarelli C, Coppe A, Vannucchi AM, Bortoluzzi S. Small RNA sequencing uncovers new miRNAs and moRNAs differentially expressed in normal and primary Myelofibrosis CD34+ cells. PLoS One. 2015;10(10):e0140445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Wilhelm BT, Briau M, Austin P, Faubert A, Boucher G, Chagnon P, Hope K, Girard S, Mayotte N, Landry JR, Hebert J, Sauvageau G. RNA-seq analysis of 2 closely related leukemia clones that differ in their self-renewal capacity. Blood. 2011;117(2):e27–38.

    Article  CAS  PubMed  Google Scholar 

  183. Spinelli R, Pirola A, Redaelli S, Sharma N, Raman H, Valletta S, et al. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases. Mol Genet Genomic Med. 2013;1(4):246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brooks AN, Choi PS, de Waal L, Sharifnia T, Imielinski M, Saksena G, et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One. 2014;9(1):e87361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Li XY, Yao X, Li SN, Suo AL, Ruan ZP, Liang X, Kong Y, Zhang WG, Yao Y. RNA-Seq profiling reveals aberrant RNA splicing in patient with adult acute myeloid leukemia during treatment. Eur Rev Med Pharmacol Sci. 2014;18(9):1426–33.

    PubMed  Google Scholar 

  186. Rathe SK, Moriarity BS, Stoltenberg CB, Kurata M, Aumann NK, Rahrmann EP, et al. Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia. Sci Rep. 2014;4:6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Swanson L, Robertson G, Mungall KL, Butterfield YS, Chiu R, Corbett RD, et al. Barnacle: detecting and characterizing tandem duplications and fusions in transcriptome assemblies. BMC Genomics. 2013;14:550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Francis RW, Thompson-Wicking K, Carter KW, Anderson D, Kees UR, Beesley AH. FusionFinder: a software tool to identify expressed gene fusion candidates from RNA-Seq data. PLoS One. 2012;7(6):e39987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG, Gottgens B. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 2016;128(8):e20–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O’Laughlin M, et al. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia. 2015;29(6):1279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Haladyna JN, Yamauchi T, Neff T, Bernt KM. Epigenetic modifiers in normal and malignant hematopoiesis. Epigenomics. 2015;7(2):301–20.

    Article  CAS  PubMed  Google Scholar 

  194. Fong CY, Morison J, Dawson MA. Epigenetics in the hematologic malignancies. Haematologica. 2014;99(12):1772–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Network CGAR. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.

    Article  CAS  Google Scholar 

  196. Wakita S, Yamaguchi H, Omori I, Terada K, Ueda T, Manabe E, et al. Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia. 2013;27(5):1044–52.

    Article  CAS  PubMed  Google Scholar 

  197. Ahn JS, Kim HJ, Kim YK, Jung SH, Yang DH, Lee JJ, et al. Adverse prognostic effect of homozygous TET2 mutation on the relapse risk of acute myeloid leukemia in patients of normal karyotype. Haematologica. 2015;100(9):e351–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Voso MT, Lo-Coco F, Fianchi L. Epigenetic therapy of myelodysplastic syndromes and acute myeloid leukemia. Curr Opin Oncol. 2015;27(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  199. Gill H, Leung AY, Kwong YL. Molecularly targeted therapy in acute myeloid leukemia. Future Oncol. 2016;12(6):827–38.

    Article  CAS  PubMed  Google Scholar 

  200. Bravo GM, Lee E, Merchan B, Kantarjian HM, Garcia-Manero G. Integrating genetics and epigenetics in myelodysplastic syndromes: advances in pathogenesis and disease evolution. Br J Haematol. 2014;166(5):646–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gronbaek K, Muller-Tidow C, Perini G, Lehmann S, Bach Treppendahl M, et al.; Epigenomics Study on MDS, Aml CABM (2012) A critical appraisal of tools available for monitoring epigenetic changes in clinical samples from patients with myeloid malignancies. Haematologica 97(9):1380–8.

    Google Scholar 

  202. McDevitt MA. Clinical applications of epigenetic markers and epigenetic profiling in myeloid malignancies. Semin Oncol. 2012;39(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  203. Holstege H, Pfeiffer W, Sie D, Hulsman M, Nicholas TJ, Lee CC, et al. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res. 2014;24(5):733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Swisher EM, Harrell MI, Norquist BM, Walsh T, Brady M, Lee M, et al. Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma. JAMA Oncol. 2016;2(3):370–2.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Tang G, Goswami RS, Liang CS, Bueso-Ramos CE, Hu S, DiNardo C, Medeiros LJ. Isolated del(5q) in patients following therapies for various malignancies may not all be clinically significant. Am J Clin Pathol. 2015;144(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  206. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, Ebert BL. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bianchi DW, Chudova D, Sehnert AJ, Bhatt S, Murray K, Prosen TL, Garber JE, Wilkins-Haug L, Vora NL, Warsof S, Goldberg J, Ziainia T, Halks-Miller M. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA. 2015;314(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  208. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo Nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164(1–2):57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Q. Konnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Konnick, E.Q., Wu, D. (2018). Existing and Emerging Molecular Technologies in Myeloid Neoplasms. In: Chang, CC., Ohgami, R. (eds) Precision Molecular Pathology of Myeloid Neoplasms. Molecular Pathology Library, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-62146-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62146-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62144-9

  • Online ISBN: 978-3-319-62146-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics