Skip to main content

Cellular Therapy in Transplantation and Tolerance

  • Chapter
  • First Online:
Technological Advances in Organ Transplantation

Abstract

The adoptive transfer of human regulatory T cells (Tregs) in transplantation offers an attractive therapeutic alternative in the current struggle to improve long-term outcomes.

CD4+CD25+FOXP3+ (Tregs) play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance. Phase I trials in bone marrow transplantation and type I diabetes have already shown that ex vivo expanded Tregs have an excellent safety profile, which is encouraging for their current use as novel therapeutic strategies in solid organ transplantation.

As such, the practicality of Treg adoptive cell therapy is now widely accepted, provided that tailor-made clinical grade procedures for the isolation and ex vivo cell handling are available. Here we present a review on the concept of Treg biology and heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions.

We will summarise some of the protocols used for their ex vivo expansion, outline the clinical trials to date and discuss the future directions of Treg cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Reibke, R., et al. (2006). CD8+ regulatory T cells generated by neonatal recognition of peripheral self-antigen. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15142–15147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Haribhai, D., et al. (2007). Regulatory T cells dynamically control the primary immune response to foreign antigen. Journal of Immunology, 178(5), 2961–2972.

    Article  CAS  Google Scholar 

  3. Zhang, Z. X., et al. (2000). Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nature Medicine, 6(7), 782–789.

    Article  PubMed  CAS  Google Scholar 

  4. Monteiro, M., et al. (2010). Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. Journal of Immunology, 185(4), 2157–2163.

    Article  CAS  Google Scholar 

  5. Hayday, A., & Tigelaar, R. (2003). Immunoregulation in the tissues by gammadelta T cells. Nature Reviews. Immunology, 3(3), 233–242.

    Article  PubMed  CAS  Google Scholar 

  6. Miyara, M., & Sakaguchi, S. (2011). Human FoxP3(+)CD4(+) regulatory T cells: Their knowns and unknowns. Immunology and Cell Biology, 89(3), 346–351.

    Article  PubMed  CAS  Google Scholar 

  7. Sakaguchi, S., et al. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology, 155(3), 1151–1164.

    CAS  Google Scholar 

  8. Bennett, C. L., et al. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genetics, 27(1), 20–21.

    Article  PubMed  CAS  Google Scholar 

  9. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061.

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi, I., et al. (2001). Novel mutations of FOXP3 in two Japanese patients with immune dysregulation, polyendocrinopathy, enteropathy, X linked syndrome (IPEX). Journal of Medical Genetics, 38(12), 874–876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Le Bras, S., & Geha, R. S. (2006). IPEX and the role of Foxp3 in the development and function of human Tregs. The Journal of Clinical Investigation, 116(6), 1473–1475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. van der Vliet, H. J., & Nieuwenhuis, E. E. (2007). IPEX as a result of mutations in FOXP3. Clinical & Developmental Immunology, 2007, 89017.

    Google Scholar 

  13. Abbas, A. K., et al. (2013). Regulatory T cells: Recommendations to simplify the nomenclature. Nature Immunology, 14(4), 307–308.

    Article  PubMed  CAS  Google Scholar 

  14. Gupta, S., Shang, W., & Sun, Z. (2008). Mechanisms regulating the development and function of natural regulatory T cells. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 56(2), 85–102.

    Article  CAS  Google Scholar 

  15. Miyara, M., et al. (2011). Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmunity Reviews, 10(12), 744–755.

    Article  PubMed  CAS  Google Scholar 

  16. Afzali, B., Lechler, R. I., & Hernandez-Fuentes, M. P. (2007). Allorecognition and the alloresponse: Clinical implications. Tissue Antigens, 69(6), 545–556.

    Article  PubMed  CAS  Google Scholar 

  17. Lindahl, K. F., & Wilson, D. B. (1977). Histocompatibility antigen-activated cytotoxic T lymphocytes. II. Estimates of the frequency and specificity of precursors. The Journal of Experimental Medicine, 145(3), 508–522.

    Article  PubMed  CAS  Google Scholar 

  18. Lindahl, K. F., & Wilson, D. B. (1977). Histocompatibility antigen-activated cytotoxic T lymphocytes. I. Estimates of the absolute frequency of killer cells generated in vitro. The Journal of Experimental Medicine, 145(3), 500–507.

    Article  PubMed  CAS  Google Scholar 

  19. Suchin, E. J., et al. (2001). Quantifying the frequency of alloreactive T cells in vivo: New answers to an old question. Journal of Immunology, 166(2), 973–981.

    Article  CAS  Google Scholar 

  20. Smyth, L. A., et al. (2006). A novel pathway of antigen presentation by dendritic and endothelial cells: Implications for allorecognition and infectious diseases. Transplantation, 82(1 Suppl), S15–S18.

    Article  PubMed  Google Scholar 

  21. Lechler, R. I., Garden, O. A., & Turka, L. A. (2003). The complementary roles of deletion and regulation in transplantation tolerance. Nature Reviews. Immunology, 3(2), 147–158.

    Article  PubMed  CAS  Google Scholar 

  22. Walsh, P. T., Taylor, D. K., & Turka, L. A. (2004). Tregs and transplantation tolerance. The Journal of Clinical Investigation, 114(10), 1398–1403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sakaguchi, S., et al. (2013). The plasticity and stability of regulatory T cells. Nature Reviews. Immunology, 13(6), 461–467.

    Article  PubMed  CAS  Google Scholar 

  24. Allan, S. E., et al. (2007). Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. International Immunology, 19(4), 345–354.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, W., et al. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. The Journal of Experimental Medicine, 203(7), 1701–1711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Miyara, M., et al. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 30(6), 899–911.

    Article  PubMed  CAS  Google Scholar 

  27. Pesenacker, A. M., et al. (2013). CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood, 121(14), 2647–2658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Afzali, B., et al. (2013). CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner. European Journal of Immunology, 43(8), 2043–2054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Duhen, T., et al. (2012). Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood, 119(19), 4430–4440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Povoleri, G. A., et al. (2013). Thymic versus induced regulatory T cells – Who regulates the regulators? Frontiers in Immunology, 4, 169.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borsellino, G., et al. (2007). Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood, 110(4), 1225–1232.

    Article  PubMed  CAS  Google Scholar 

  32. Sugiyama, D., et al. (2013). Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17945–17950.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tauro, S., et al. (2013). Diversification and senescence of Foxp3+ regulatory T cells during experimental autoimmune encephalomyelitis. European Journal of Immunology, 43(5), 1195–1207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Deaglio, S., et al. (2007). Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. The Journal of Experimental Medicine, 204(6), 1257–1265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Guo, F., et al. (2008). CD28 controls differentiation of regulatory T cells from naive CD4 T cells. Journal of Immunology, 181(4), 2285–2291.

    Article  CAS  Google Scholar 

  36. Miyara, M., et al. (2015). Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7225–7230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Takahashi, T., et al. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. The Journal of Experimental Medicine, 192(2), 303–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fu, S., et al. (2004). CD4+ CD25+ CD62+ T-regulatory cell subset has optimal suppressive and proliferative potential. American Journal of Transplantation, 4(1), 65–78.

    Article  PubMed  CAS  Google Scholar 

  39. Henderson, J. G., & Hawiger, D. (2015). Regulation of extrathymic Treg cell conversion by CD5. Oncotarget, 6(29), 26554–26555.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Henderson, J. G., et al. (2015). CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity, 42(3), 471–483.

    Article  PubMed  CAS  Google Scholar 

  41. Nakamura, K., et al. (2004). TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. Journal of Immunology, 172(2), 834–842.

    Article  CAS  Google Scholar 

  42. Hara, M., et al. (2001). IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. Journal of Immunology, 166(6), 3789–3796.

    Article  CAS  Google Scholar 

  43. Rubtsov, Y. P., et al. (2008). Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity, 28(4), 546–558.

    Article  PubMed  CAS  Google Scholar 

  44. McHugh, R. S., et al. (2002). CD4(+)CD25(+) immunoregulatory T cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity, 16(2), 311–323.

    Article  PubMed  CAS  Google Scholar 

  45. Collison, L. W., et al. (2007). The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature, 450(7169), 566–569.

    Article  PubMed  CAS  Google Scholar 

  46. Stockis, J., et al. (2009). Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. European Journal of Immunology, 39(12), 3315–3322.

    Article  PubMed  CAS  Google Scholar 

  47. Ito, T., et al. (2008). Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity, 28(6), 870–880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fu, S., et al. (2004). TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. American Journal of Transplantation, 4(10), 1614–1627.

    Article  PubMed  CAS  Google Scholar 

  49. Baecher-Allan, C., Wolf, E., & Hafler, D. A. (2006). MHC class II expression identifies functionally distinct human regulatory T cells. Journal of Immunology, 176(8), 4622–4631.

    Article  CAS  Google Scholar 

  50. So, T., & Croft, M. (2007). Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. Journal of Immunology, 179(3), 1427–1430.

    Article  CAS  Google Scholar 

  51. Thornton, A. M., et al. (2010). Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. Journal of Immunology, 184(7), 3433–3441.

    Article  CAS  Google Scholar 

  52. Till, B. G., & Press, O. W. (2012). Depletion of Tregs for adoptive T-cell therapy using CD44 and CD137 as selection markers. Immunotherapy, 4(5), 483–485.

    Article  PubMed  CAS  Google Scholar 

  53. Annacker, O., et al. (2005). Essential role for CD103 in the T cell-mediated regulation of experimental colitis. The Journal of Experimental Medicine, 202(8), 1051–1061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Grossman, W. J., et al. (2004). Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity, 21(4), 589–601.

    Article  PubMed  CAS  Google Scholar 

  55. Grossman, W. J., et al. (2004). Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood, 104(9), 2840–2848.

    Article  PubMed  CAS  Google Scholar 

  56. Haas, J., et al. (2007). Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. Journal of Immunology, 179(2), 1322–1330.

    Article  CAS  Google Scholar 

  57. Patton, D. T., et al. (2011). The PI3K p110delta regulates expression of CD38 on regulatory T cells. PLoS ONE, 6(3), e17359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gondek, D. C., et al. (2005). Cutting edge: Contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. Journal of Immunology, 174(4), 1783–1786.

    Article  CAS  Google Scholar 

  59. Mason, G. M., et al. (2015). Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry. Journal of Immunology, 195(5), 2030–2037.

    Article  CAS  Google Scholar 

  60. Sakaguchi, S., et al. (2009). Regulatory T cells: How do they suppress immune responses? International Immunology, 21(10), 1105–1111.

    Article  PubMed  CAS  Google Scholar 

  61. Cao, X., et al. (2007). Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 27(4), 635–646.

    Article  PubMed  CAS  Google Scholar 

  62. de la Rosa, M., et al. (2004). Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. European Journal of Immunology, 34(9), 2480–2488.

    Article  PubMed  CAS  Google Scholar 

  63. Pandiyan, P., et al. (2007). CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature Immunology, 8(12), 1353–1362.

    Article  PubMed  CAS  Google Scholar 

  64. Dwyer, K. M., et al. (2010). Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. American Journal of Transplantation, 10(11), 2410–2420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Smyth, L. A., et al. (2013). CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. European Journal of Immunology, 43(9), 2430–2440.

    Article  PubMed  CAS  Google Scholar 

  66. Sitkovsky, M. V., & Ohta, A. (2005). The 'danger' sensors that STOP the immune response: The A2 adenosine receptors? Trends in Immunology, 26(6), 299–304.

    Article  PubMed  CAS  Google Scholar 

  67. Cederbom, L., Hall, H., & Ivars, F. (2000). CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. European Journal of Immunology, 30(6), 1538–1543.

    Article  PubMed  CAS  Google Scholar 

  68. Sakaguchi, S., Wing, K., & Yamaguchi, T. (2009). Dynamics of peripheral tolerance and immune regulation mediated by Treg. European Journal of Immunology, 39(9), 2331–2336.

    Article  PubMed  CAS  Google Scholar 

  69. Grohmann, U., et al. (2002). CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunology, 3(11), 1097–1101.

    Article  PubMed  CAS  Google Scholar 

  70. Munn, D. H., et al. (1999). Inhibition of T cell proliferation by macrophage tryptophan catabolism. The Journal of Experimental Medicine, 189(9), 1363–1372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Belladonna, M. L., et al. (2007). Immunosuppression via tryptophan catabolism: The role of kynurenine pathway enzymes. Transplantation, 84(1 Suppl), S17–S20.

    Article  PubMed  CAS  Google Scholar 

  72. Liang, B., et al. (2008). Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. Journal of Immunology, 180(9), 5916–5926.

    Article  CAS  Google Scholar 

  73. Shalev, I., et al. (2012). Role of regulatory T cells in the promotion of transplant tolerance. Liver Transplantation, 18(7), 761–770.

    Article  PubMed  Google Scholar 

  74. Wood, K. J., & Sakaguchi, S. (2003). Regulatory T cells in transplantation tolerance. Nature Reviews. Immunology, 3(3), 199–210.

    Article  PubMed  CAS  Google Scholar 

  75. Li, W., et al. (2006). The role of Foxp3+ regulatory T cells in liver transplant tolerance. Transplantation Proceedings, 38(10), 3205–3206.

    Article  PubMed  CAS  Google Scholar 

  76. Graca, L., Cobbold, S. P., & Waldmann, H. (2002). Identification of regulatory T cells in tolerated allografts. The Journal of Experimental Medicine, 195(12), 1641–1646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Wise, M. P., et al. (1998). Linked suppression of skin graft rejection can operate through indirect recognition. Journal of Immunology, 161(11), 5813–5816.

    CAS  Google Scholar 

  78. Sanchez-Fueyo, A., et al. (2002). Tracking the immunoregulatory mechanisms active during allograft tolerance. Journal of Immunology, 168(5), 2274–2281.

    Article  CAS  Google Scholar 

  79. Li, Y., et al. (2004). Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. American Journal of Transplantation, 4(12), 2118–2125.

    Article  PubMed  Google Scholar 

  80. Demirkiran, A., et al. (2006). Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transplantation, 12(2), 277–284.

    Article  PubMed  Google Scholar 

  81. Tsang, J. Y., et al. (2009). Indefinite mouse heart allograft survival in recipient treated with CD4(+)CD25(+) regulatory T cells with indirect allospecificity and short term immunosuppression. Transplant Immunology, 21(4), 203–209.

    Article  PubMed  CAS  Google Scholar 

  82. Joffre, O., et al. (2008). Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nature Medicine, 14(1), 88–92.

    Article  PubMed  CAS  Google Scholar 

  83. Golshayan, D., et al. (2007). In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood, 109(2), 827–835.

    Article  PubMed  CAS  Google Scholar 

  84. Tang, Q., et al. (2004). In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. The Journal of Experimental Medicine, 199(11), 1455–1465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lee, K., et al. (2014). Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. American Journal of Transplantation, 14(1), 27–38.

    Article  PubMed  CAS  Google Scholar 

  86. Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. Nature Reviews. Immunology, 7(2), 118–130.

    Article  PubMed  CAS  Google Scholar 

  87. Brunstein, C. G., et al. (2011). Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics. Blood, 117(3), 1061–1070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Issa, F., et al. (2010). Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation, 90(12), 1321–1327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nadig, S. N., et al. (2010). In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nature Medicine, 16(7), 809–813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sagoo, P., et al. (2012). Alloantigen-specific regulatory T cells prevent experimental chronic graft-versus-host disease by simultaneous control of allo- and autoreactivity. European Journal of Immunology, 42(12), 3322–3333.

    Article  PubMed  CAS  Google Scholar 

  91. Putnam, A. L., et al. (2013). Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. American Journal of Transplantation, 13(11), 3010–3020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Spadafora-Ferreira, M., et al. (2007). CD4+CD25+Foxp3+ indirect alloreactive T cells from renal transplant patients suppress both the direct and indirect pathways of allorecognition. Scandinavian Journal of Immunology, 66(2–3), 352–361.

    Article  PubMed  CAS  Google Scholar 

  93. Yamada, A., et al. (2001). Recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. Journal of Immunology, 167(10), 5522–5526.

    Article  CAS  Google Scholar 

  94. Taylor, P. A., Lees, C. J., & Blazar, B. R. (2002). The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood, 99(10), 3493–3499.

    Article  PubMed  CAS  Google Scholar 

  95. Hoffmann, P., et al. (2006). Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood, 108(13), 4260–4267.

    Article  PubMed  CAS  Google Scholar 

  96. Tang, Q., & Bluestone, J. A. (2013). Regulatory T-cell therapy in transplantation: Moving to the clinic. Cold Spring Harb Perspect Med, 3(11), 1–15.

    Article  CAS  Google Scholar 

  97. Veerapathran, A., et al. (2013). Human regulatory T cells against minor histocompatibility antigens: Ex vivo expansion for prevention of graft-versus-host disease. Blood, 122(13), 2251–2261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Noyan, F., et al. (2014). Isolation of human antigen-specific regulatory T cells with high suppressive function. European Journal of Immunology, 44(9), 2592–2602.

    Article  PubMed  CAS  Google Scholar 

  99. Canavan, J. B., et al. (2016). Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut, 65(4), 584–594.

    Article  PubMed  CAS  Google Scholar 

  100. Scotta, C., et al. (2013). Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations. Haematologica, 98(8), 1291–1299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Safinia, N., Vaikunthanathan, T., Fraser, H., Thirkell, S., Lowe, K., Blackmore, L., Whitehouse, G., Martinez-Llordella, M., Jassem, W., Sanchez-Fueyo, A., Lechler, R. I., & Lombardi, G. (2016). Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget, 7(7), 7563–7577.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Afzali, B., et al. (2013). Comparison of regulatory T cells in hemodialysis patients and healthy controls: Implications for cell therapy in transplantation. Clinical Journal of the American Society of Nephrology, 8(8), 1396–1405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Marek-Trzonkowska, N., et al. (2012). Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care, 35(9), 1817–1820.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Trzonkowski, P., et al. (2009). First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clinical Immunology, 133(1), 22–26.

    Article  PubMed  CAS  Google Scholar 

  105. Di Ianni, M., et al. (2011). Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood, 117(14), 3921–3928.

    Article  PubMed  CAS  Google Scholar 

  106. Bluestone, J. A., et al. (2015). Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine, 7(315), 315ra189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Jonuleit, H., et al. (2001). Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. The Journal of Experimental Medicine, 193(11), 1285–1294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Levings, M. K., Sangregorio, R., & Roncarolo, M. G. (2001). Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. The Journal of Experimental Medicine, 193(11), 1295–1302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Todo, S., et al. (2016). A pilot study of operational tolerance with a regulatory T cell-based cell therapy in living donor liver transplantation. Hepatology, 64(2), 632–643.

    Article  PubMed  CAS  Google Scholar 

  110. Safinia, N., et al. (2015). Regulatory T cells: Serious contenders in the promise for immunological tolerance in transplantation. Frontiers in Immunology, 6, 438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ballou, L. M., & Lin, R. Z. (2008). Rapamycin and mTOR kinase inhibitors. Journal of Chemical Biology, 1(1–4), 27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Procaccini, C., et al. (2010). An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity, 33(6), 929–941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hester, J., et al. (2012). Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. American Journal of Transplantation, 12(8), 2008–2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Akimova, T., et al. (2012). Differing effects of rapamycin or calcineurin inhibitor on T-regulatory cells in pediatric liver and kidney transplant recipients. American Journal of Transplantation, 12(12), 3449–3461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zhao, T., et al. (2013). Comparison of regulatory T cells and FoxP3-positive T-cell subsets in the peripheral blood of renal transplant recipients with sirolimus versus cyclosporine: A preliminary study. Transplantation Proceedings, 45(1), 148–152.

    Article  PubMed  CAS  Google Scholar 

  116. Rossetti, M., et al. (2015). Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region. Journal of Immunology, 194(1), 113–124.

    Article  PubMed  CAS  Google Scholar 

  117. Liao, W., Lin, J. X., & Leonard, W. J. (2013). Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity, 38(1), 13–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Zorn, E., et al. (2006). IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood, 108(5), 1571–1579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Koreth, J., et al. (2016). Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft vs. host disease. Blood, 128(1), 130–137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Grinberg-Bleyer, Y., et al. (2010). IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. The Journal of Experimental Medicine, 207(9), 1871–1878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Pilon, C. B., et al. (2014). Administration of low doses of IL-2 combined to rapamycin promotes allogeneic skin graft survival in mice. American Journal of Transplantation, 14(12), 2874–2882.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mason, G.M., Patel, J., Halim, L., Safinia, N., Lombardi, G. (2017). Cellular Therapy in Transplantation and Tolerance. In: Nadig, S., Wertheim, J. (eds) Technological Advances in Organ Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-62142-5_6

Download citation

Publish with us

Policies and ethics