Skip to main content

Xenotransplantation

  • Chapter
  • First Online:
  • 544 Accesses

Abstract

Shortages in the number of available donor organs continue to force the transplant community to seek alternative options in an effort to meet the high demand. Cross species, or xenotransplantation, using swine as potential donors, has long been hypothesized as a potential attractive strategy for solving the organ shortage crisis due to the supply of available donors, as well as anatomical and physiological similarities between swine and humans. Early studies with wild-type swine donors were limited due to shortened survival as a result of acute humoral xenograft rejection due to circulating preformed antibodies. The eventual development of α-1,3-galactosyltransferase knock-out swine donors in the early 2000s has been critical in advancing preclinical xenotransplantation research, and more recently through significant improvements in genetic engineering technology such as CRISPR/Cas9, the development of multitransgenic swine donors has allowed xenotransplantation to progress closer to becoming a clinical reality. Here, we provide a brief overview of early clinical xenotransplantation experience, followed by major technological advances and current barriers to solid organ (kidney, liver, heart, and lung) and islet cell xenotransplantation.

This is a preview of subscription content, log in via an institution.

References

  1. OPTN Stats OPTN. (2016). Organ Procurement and Transplantation Network. http://optn.transplant.hrsa.gov. Last accessed on 28 Mar 2016.

  2. Cooper, D. K. C., Gollackner, B., & Sachs, D. H. (2002). Will the pig solve the transplantation backlog? Annual Review of Medicine, 53(53), 133–147.

    Article  CAS  PubMed  Google Scholar 

  3. Ekser, B., Ezzelarab, M., Hara, H., Van Der Windt, D. J., Wijkstrom, M., Bottino, R., et al. (2012). Clinical xenotransplantation: The next medical revolution? Lancet, 379(9816), 672–683.

    Article  PubMed  Google Scholar 

  4. Ibrahim, Z., Busch, J., Awwad, M., Wagner, R., Wells, K., & Cooper, D. K. C. (2006). Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation, 13(6), 488–499.

    Article  PubMed  Google Scholar 

  5. Sachs, D. H. (1994). The pig as a xenograft donor. Pathologie Biologie (Paris), 42(3), 217–219.

    CAS  Google Scholar 

  6. Editorial. (1999). US guidelines on xenotransplantation. Nature Medicine, 5(5), 465.

    Article  CAS  Google Scholar 

  7. Reemtsma, K., Mccracken, B. H., Schlegel, J. U., & Pearl, M. (1964). Heterotransplantation of the kidney: Two clinical experiences. Science, 143(3607), 700–702.

    Article  CAS  PubMed  Google Scholar 

  8. Hardy, J. D., Kurrus, F. D., Chavez, C. M., Neely, W. A., Eraslan, S., Turner, M. D., et al. (1964). Heart transplantation in man. Developmental studies and report of a case. Journal of the American Medical Association, 188(13), 1132–1140.

    PubMed  CAS  Google Scholar 

  9. Starzl, T. E., Fung, J., Tzakis, A., Todo, S., Demetris, A. J., Marino, I. R., et al. (1993). Baboon-to-human liver transplantation. Lancet, 341(8837), 65–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, J. L., Im, G. S., et al. (2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 295(5557), 1089–1092.

    Article  CAS  PubMed  Google Scholar 

  11. Ekser, B., Rigotti, P., Gridelli, B., & Cooper, D. K. C. (2009). Xenotransplantation of solid organs in the pig-to-primate model. Transplant Immunology, 21(2), 87–92.

    Article  PubMed  Google Scholar 

  12. Byrne, G. W., McGregor, C. G. A., & Breimer, M. E. (2015). Recent investigations into pig antigen and anti-pig antibody expression. International Journal of Surgery, 23, 223–228.

    Article  PubMed  Google Scholar 

  13. Azimzadeh, A. M., Byrne, G. W., Ezzelarab, M., Welty, E., Braileanu, G., Cheng, X., et al. (2008). Development of a consensus protocol to quantify primate anti-non-gal xenoreactive antibodies using pig aortic endothelial cells. Xenotransplantation, 21(6), 555–566.

    Article  Google Scholar 

  14. Butler, J. R., Ladowski, J. M., Martens, G. R., Tector, M., & Tector, A. J. (2015). Recent advances in genome editing and creation of genetically modified pigs. International Journal of Surgery, 23, 217–222.

    Article  PubMed  Google Scholar 

  15. Mali, P., Esvelt, K. M., & Church, G. M. (2013). Cas9 as a versatile tool for engineering biology. Nature Methods, 10(10), 957–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng, W., Dai, Y., Mou, L., Cooper, D. K. C., Shi, D., & Cai, Z. (2015). The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. International Journal of Molecular Sciences, 16(3), 6545–6556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, P., Estrada, J. L., Burlak, C., Montgomery, J., Butler, J. R., Santos, R. M., et al. (2015). Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation, 22(1), 20–31.

    Article  CAS  PubMed  Google Scholar 

  18. Cooper, D. K. C., Ekser, B., & Tector, A. J. (2015). Immunobiological barriers to xenotransplantation. International Journal of Surgery, 23, 211–216.

    Article  PubMed  Google Scholar 

  19. Ramsoondar, J., Vaught, T., Ball, S., Mendicino, M., Monahan, J., Jobst, P., et al. (2009). Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation, 16(3), 164–180.

    Article  PubMed  Google Scholar 

  20. Dieckhoff, B., Petersen, B., Kues, W. A., Kurth, R., Niemann, H., & Denner, J. (2008). Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation, 15(1), 36–45.

    Article  PubMed  Google Scholar 

  21. Yang, L., Güell, M., Niu, D., George, H., Lesha, E., Grishin, D., et al. (2015 Nov 27). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 350(6264), 1101–1104.

    Article  CAS  PubMed  Google Scholar 

  22. Lambrigts, D., Sachs, D. H., & Cooper, D. K. (1998 Sep 15). Discordant organ xenotransplantation in primates: World experience and current status. Transplantation, 66(5), 547–561.

    Article  CAS  PubMed  Google Scholar 

  23. Baldana, N., Rigotti, P., Calabrese, F., Cadrobbi, R., Dedja, A., Iacopetti, I., et al. (2004). Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: A phenomenon related to immunological events? American Journal of Transplantation, 4(4), 475–481.

    Article  Google Scholar 

  24. Yamada, K., Yazawa, K., Shimizu, A., Iwanaga, T., Hisashi, Y., Nuhn, M., et al. (2005). Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the Cotransplantation of vascularized Thymic tissue. Nature Medicine, 11(1), 32–34.

    Article  CAS  PubMed  Google Scholar 

  25. Buhler, L., Awwad, M., Basker, M., Gojo, S., Watts, A., Treter, S., et al. (2000). High-dose porcine hematopoeitic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation, 69(11), 2296–2304.

    Article  CAS  PubMed  Google Scholar 

  26. Iwase, H., Ekser, B., Satyananda, V., Bhama, J., Hara, H., Ezzelarab, M., et al. (2015). Pig-to-baboon heterotopic heart transplantation – exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation, 22, 211–220.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shimizu, A., Yamada, K., Yamamoto, S., Lavelle, J. M., Barth, R. N., Robson, S. C., et al. (2005). Thrombotic microangiopathic glomerulopathy in human decay accelerating factor-transgenic swine-to-baboon kidney xenografts. Journals of the American Society of Nephrology, 16(9), 2732–2745.

    Article  CAS  Google Scholar 

  28. Ierino, F. L., Kozlowski, T., Siegel, J. B., Shimizu, A., Colvin, R. B., Banerjee, P. T., et al. (1998). Disseminated intravascular coagulation in association with the delayed rejection of pig-to-baboon renal xenografts. Transplantation, 66(11), 1439–1450.

    Article  CAS  PubMed  Google Scholar 

  29. Miwa, Y., Yamamoto, K., Onishi, A., Iwamoto, M., Yazaki, S., Haneda, M., et al. (2010). Potential value of human thrombomodulin and DAF expression for coagulation control in pig-to-human xenotransplantation. Xenotransplantation, 17(1), 26–37.

    Article  PubMed  Google Scholar 

  30. Iwase, H., Ezzelarab, M. B., Ekser, B., & Cooper, D. K. C. (2014). The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation, 21(3), 201–220.

    Article  PubMed  Google Scholar 

  31. Higginbotham, L., Mathews, D., Breeden, C. A., Song, M., Farris, A. B., Larsen, C. P., et al. (2015). Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation, 22, 221–230.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Iwase, H., Liu, H., Wijkstrom, M., Zhou, H., Singh, J., Hara, H., et al. (2015). Pig kidney graft survival in a baboon for 136 days: Longest life-supporting organ graft survival to date. Xenotransplantation, 22(4), 302–309.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tasaki, M., Shimizu, A., Hanekamp, I., Torabi, R., Villani, V., & Yamada, K. (2014). Rituximab treatment prevents the early development of proteinuria following pig-to-baboon xeno-kidney transplantation. Journals of the American Society of Nephrology, 25(4), 737–744.

    Article  CAS  Google Scholar 

  34. Soin, B., Ostlie, D., Cozzi, E., Smith, K. G., Bradley, J. R., Vial, C., et al. (2000). Growth of porcine kidneys in their native and xenograft environment. Xenotransplantation, 7(2), 96–100.

    Article  CAS  PubMed  Google Scholar 

  35. Higginbotham, L., Mathews, D., Stephenson, A., Breeden, C., Larsen, C., & For, M. (2015). Long-term survival of pig-to-primate renal xenotransplant using costimulation-blockade immunosuppression. Xenotransplantation, 22(Supplement:S45).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Calne, R. Y., White, H. J., Herbertson, B. M., Millard, P. R., Davis, D. R., Salaman, J. R., et al. (1968). Pig-to-baboon liver xenografts. Lancet, 1(7553), 1176–1178.

    Article  CAS  PubMed  Google Scholar 

  37. Ramirez, P., Chavez, R., Majado, M., Munitiz, V., Muñoz, A., Hernandez, Q., et al. (2000). Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation, 70(7), 989–998.

    Article  CAS  PubMed  Google Scholar 

  38. Ekser, B., Long, C., Echeverri, G. J., Hara, H., Ezzelarab, M., Lin, C. C., et al. (2010). Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants. American Journal of Transplantation, 10, 273–285.

    Article  CAS  PubMed  Google Scholar 

  39. Ekser, B., Echeverri, G. J., Hassett, A. C., Yazer, M. H., Long, C., Meyer, M., et al. (2010). Hepatic function after genetically engineered pig liver transplantation in baboons. Transplantation, 90, 483–493.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim, K., Schuetz, C., Elias, N., Veillette, G. R., Wamala, I., Varma, M., et al. (2012). Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons. Xenotransplantation, 19, 256–264.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Navarro-Alvarez, N., Shah, J. A., Zhu, A., Ligocka, J., Yeh, H., Elias, N., et al. (2016). The effects of exogenous administration of human coagulation factors following pig-to-baboon liver xenotransplantation. American Journal of Transplantation, 16(6), 1715–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shah, J. A., Navarro-Alvarez, N., DeFazio, M., Rosales, I., Elias, N., Yeh, H., et al. (2016). A bridge to somewhere: 25-day survival following pig-to-baboon liver xenotransplantation. Annals of Surgery, 263(6), 1069–1071.

    Article  PubMed  Google Scholar 

  43. Kobayashi, T., Taniguchi, S., Ye, Y., Niekrasz, M., Nour, B., & Cooper, D. K. (1998 Apr). Comparison of bile chemistry between humans, baboons, and pigs: Implications for clinical and experimental liver xenotransplantation. Laboratory Animal Science, 48(2), 197–200.

    PubMed  CAS  Google Scholar 

  44. Ekser, B., Lin, C. C., Long, C., Echeverri, G. J., Hara, H., Ezzelarab, M., et al. (2012 Aug). Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transplant International, 25(8), 882–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paris, L. L., Chihara, R. K., Sidner, R. A., Joseph Tector, A., & Burlak, C. (2012). Differences in human and porcine platelet oligosaccharides may influence phagocytosis by liver sinusoidal cells in vitro. Xenotransplantation, 19(1), 31–39.

    Article  PubMed  Google Scholar 

  46. Peng, Q., Yeh, H., Wei, L., Enjyoj, K., Machaidze, Z., Csizmad, E., et al. (2012). Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells. PloS One, 7(10), 1–7.

    Article  Google Scholar 

  47. Ekser, B., Markmann, J. F., & Tector, A. J. (2015). Current status of pig liver xenotransplantation. International Journal of Surgery, 23, 1–7.

    Article  Google Scholar 

  48. Mohiuddin, M. M., Reichart, B., Byrne, G. W., & McGregor, C. G. A. (2015). Current status of pig heart xenotransplantation. International Journal of Surgery, 23, 234–239.

    Article  PubMed  Google Scholar 

  49. Buhler, L., Friedman, T., Iacomini, J., & Cooper, D. K. (1999). Xenotransplantation – state of the art – update 1999. Frontiers in Bioscience, 4(D4), 16–32.

    Google Scholar 

  50. Kuwaki, K., Knosalla, C., Dor, F. J. M. F., Gollackner, B., Tseng, Y. L., Houser, S., et al. (2004). Suppression of natural and elicited antibodies in pig-to-baboon heart transplantation using a human anti-human CD154 mAb-based regimen. American Journal of Transplantation, 4(3), 363–372.

    Article  CAS  PubMed  Google Scholar 

  51. Kuwaki, K., Tseng, Y. L., Dor, F. J., Shimizu, A., Houser, S. L., Lancos, C. J., et al. (2005). Heart transplantation in baboons using alpha1,3-galactosyltransferase gene- knockout pigs as donors: Initial experience. Nature Medicine, 11(1), 29–31.

    Article  CAS  PubMed  Google Scholar 

  52. Tseng, Y.-L., Kuwaki, K., Dor, F. J. M. F., Shimizu, A., Houser, S., Hisashi, Y., et al. (2005). alpha1,3-galactosyltransferase gene-knockout pig heart transplantation in baboons with survival approaching 6 months. Transplantation, 80(10), 1493–1500.

    Article  CAS  PubMed  Google Scholar 

  53. Mohiuddin, M. M., Corcoran, P. C., Singh, A. K., Azimzadeh, A., Hoyt, R. F., Thomas, M. L., et al. (2012). B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months. American Journal of Transplantation, 12(3), 763–771.

    Article  CAS  PubMed  Google Scholar 

  54. Mohiuddin, M. M., Singh, A. K., Corcoran, P. C., Hoyt, R. F., Thomas, M. L., Lewis, B. G. T., et al. (2014). Role of anti-CD40 antibody-mediated costimulation blockade on non-gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon model. Xenotransplantation, 21(1), 35–45.

    Article  PubMed  Google Scholar 

  55. Mohiuddin, M. M., Singh, A. K., Corcoran, P. C., Thomas Iii, M. L., Clark, T., Lewis, B. G., et al. (2016). Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nature Communications, 7, 11138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iwase, H., Ekser, B., Satyananda, V., Bhama, J., Hara, H., Ezzelarab, M., et al. (2015). Pig-to-baboon heterotopic heart transplantation – exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation, 23, 211–220.

    Article  Google Scholar 

  57. Barnard, C. N., Losman, J. G., Curcio, C. A., Sanchez, H. E., Wolpowitz, A., & Barnard, M. S. (1977). The advantage of heterotopic cardiac transplantation over orthotopic cardiac transplantation in the management of severe acute rejection. The Journal of Thoracic and Cardiovascular Surgery, 74(6), 918–924.

    PubMed  CAS  Google Scholar 

  58. Bauer, A., Postrach, J., Thormann, M., Blanck, S., Faber, C., Wintersperger, B., et al. (2010). First experience with heterotopic thoracic pig-to-baboon cardiac xenotransplantation. Xenotransplantation, 17(3), 243–249.

    Article  PubMed  Google Scholar 

  59. Mohiuddin, M. M., Singh, A. K., Corcoran, P. C., Hoyt, R. F., Thomas, M. L., Ayares, D., et al. (2014 Sep). Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. The Journal of Thoracic and Cardiovascular Surgery, 148(3), 1106–1114.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cooper, D. K., Keogh, A. M., Brink, J., Corris, P. A., Klepetko, W., Pierson, R. N., et al. (2000). Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: The present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. The Journal of Heart and Lung Transplantation, 19(12), 1125–1165.

    Article  CAS  PubMed  Google Scholar 

  61. Byrne, G. W., Du, Z., Sun, Z., Asmann, Y. W., & McGregor, C. G. A. (2011). Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation, 18(1), 14–27.

    Article  PubMed  Google Scholar 

  62. McGregor, C. G. A., Ricci, D., Miyagi, N., Stalboerger, P. G., Du, Z., Oehler, E. A., et al. (2012). Human CD55 expression blocks hyperacute rejection and restricts complement activation in gal knockout cardiac xenografts. Transplantation, 93(7), 686–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wheeler, D. G., Joseph, M. E., Mahamud, S. D., Aurand, W. L., Mohler, P. J., Pompili, V. J., et al. (2012). Transgenic swine: Expression of human CD39 protects against myocardial injury. Journal of Molecular and Cellular Cardiology, 52(5), 958–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. den Hengst, W. A., Gielis, J. F., Lin, J. Y., Van Schil, P. E., De Windt, L. J., & Moens, A. L. (2010). Lung ischemia-reperfusion injury: A molecular and clinical view on a complex pathophysiological process. American Journal of Physiology, Heart and Circulatory Physiology, 299(5), H1283–H1299.

    Article  CAS  Google Scholar 

  65. Ranieri, V., Suter, P., Tortorella, C., De Tullio, R., Dayer, J., Brienza, A., et al. (1999). Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. Journal of the American Medical Association, 282(1), 54–61.

    Article  CAS  PubMed  Google Scholar 

  66. Pierson, R. N. (2009). Antibody-mediated xenograft injury: Mechanisms and protective strategies. Transplant Immunology, 21(2), 65–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nguyen, B. N. H., Azimzadeh, A. M., Zhang, T., Wu, G., Shuurman, H. J., Sachs, D. H., et al. (2007). Life-supporting function of genetically modified swine lungs in baboons. The Journal of Thoracic and Cardiovascular Surgery, 133(5), 1354–1363.

    Article  PubMed  Google Scholar 

  68. Kubicki, N., Laird, C., Burdorf, L., Pierson, R. N., & Azimzadeh, A. M. (2015). Current status of pig lung xenotransplantation. International Journal of Surgery, 23, 247–254.

    Article  PubMed  Google Scholar 

  69. Burdorf, L., Azimzadeh, A. M., & Pierson, R. N. (2012). Xenogeneic lung transplantation models. Methods in Molecular Biology, 885(4), 169–189.

    Article  CAS  PubMed  Google Scholar 

  70. Sanchez, P. G., Bittle, G. J., Burdorf, L., Pierson, R. N., & Griffith, B. P. (2012). State of art: Clinical ex vivo lung perfusion: Rationale, current status, and future directions. The Journal of Heart and Lung Transplantation, 31(4), 339–348.

    Article  PubMed  Google Scholar 

  71. Harris, D. G., Quinn, K. J., French, B. M., Schwartz, E., Kang, E., Dahi, S., et al. (2015). Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation, 22(2), 102–111.

    Article  PubMed  Google Scholar 

  72. Collins, B. J., Blum, M. G., Parker, R. E., Chang, A. C., Blair, K. S., Zorn, G. L., et al. (2001). Thromboxane mediates pulmonary hypertension and lung inflammation during hyperacute lung rejection. Journal of Applied Physiology, 90(6), 2257–2268.

    Article  CAS  PubMed  Google Scholar 

  73. Cooper, D. K. C., Ekser, B., Burlak, C., Ezzelarab, M., Hara, H., Paris, L., et al. (2013). Clinical lung xenotransplantation – what donor genetic modifications may be necessary? Xenotransplantation, 19(3), 144–158.

    Article  Google Scholar 

  74. Kim, Y. T., Lee, H. J., Lee, S. W., Kim, J. Y., Wi, H. C., Park, S. J., et al. (2008). Pre-treatment of porcine pulmonary xenograft with desmopressin: A novel strategy to attenuate platelet activation and systemic intravascular coagulation in an ex-vivo model of swine-to-human pulmonary xenotransplantation. Xenotransplantation, 15(1), 27–35.

    Article  PubMed  Google Scholar 

  75. Chen, D., Riesbeck, K., McVey, J. H., Kemball-Cook, G., Tuddenham, E. G., Lechler, R. I., et al. (1999). Regulated inhibition of coagulation by porcine endothelial cells expressing P-selectin-tagged hirudin and tissue factor pathway inhibitor fusion proteins. Transplantation, 68(6), 832–839.

    Article  CAS  PubMed  Google Scholar 

  76. Shapiro, A. M., Lakey, J. R., Ryan, E. A., Korbutt, G. S., Toth, E., Warnock, G. L., et al. (2000 Jul 27). Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. The New England Journal of Medicine, 343(4), 230–238.

    Article  CAS  PubMed  Google Scholar 

  77. Bottino, R., Balamurugan, A. N., Smetanka, C., Bertera, S., He, J., Rood, P. P. M., et al. (2007). Isolation outcome and functional characteristics of young and adult pig pancreatic islets for transplantation studies. Xenotransplantation, 14(1), 74–82.

    Article  PubMed  Google Scholar 

  78. Eventov-Friedman, S., Tchorsh, D., Katchman, H., Shezen, E., Aronovich, A., Hecht, G., et al. (2006). Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Medicine, 3(7), 1165–1177.

    Article  CAS  Google Scholar 

  79. Hering, B. J., Wijkstrom, M., Graham, M. L., Hårdstedt, M., Aasheim, T. C., Jie, T., et al. (2006). Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nature Medicine, 12(3), 301–303.

    Article  CAS  PubMed  Google Scholar 

  80. Cardona, K., Korbutt, G. S., Milas, Z., Lyon, J., Cano, J., Jiang, W., et al. (2006). Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nature Medicine, 12(3), 304–306.

    Article  CAS  PubMed  Google Scholar 

  81. Van Der Windt, D. J., Bottino, R., Casu, A., Campanile, N., Smetanka, C., He, J., et al. (2009). Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. American Journal of Transplantation, 9(12), 2716–2726.

    Article  CAS  PubMed  Google Scholar 

  82. Thompson, P., Badell, I. R., Lowe, M., Cano, J., Song, M., Leopardi, F., et al. (2011 Dec). Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function. American Journal of Transplantation, 11(12), 2593–2602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park, C. G., Bottino, R., & Hawthorne, W. J. (2015). Current status of islet xenotransplantation. International Journal of Surgery, 23, 261–266.

    Article  PubMed  Google Scholar 

  84. Hawthorne, W. J., Salvaris, E. J., Phillips, P., Hawkes, J., Liuwantara, D., Burns, H., et al. (2014). Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. American Journal of Transplantation, 14(6), 1300–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thompson, P., Cardona, K., Russell, M., Badell, I. R., Shaffer, V., Korbutt, G., et al. (2011). CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates. American Journal of Transplantation, 11(5), 947–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dufrane, D., Goebbels, R.-M., & Gianello, P. (2010). Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation, 90(10), 1054–1062.

    Article  PubMed  Google Scholar 

  87. Estrada, J. L., Martens, G., Li, P., Adams, A., Newell, K. A., Ford, M. L., et al. (2015). Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation, 22(3), 194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cooper, D. K., Ekser, B., Ramsoondar, J., et al. (2016). The role of genetically engineered pigs in xenotransplantation. The Journal of Pathology, 238(2), 288–299.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Vagefi MD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, J.A., Ekser, B., Vagefi, P.A. (2017). Xenotransplantation. In: Nadig, S., Wertheim, J. (eds) Technological Advances in Organ Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-62142-5_12

Download citation

Publish with us

Policies and ethics