Time-Resolved Adaptive Direct FEM Simulation of High-Lift Aircraft Configurations

  • Johan Jansson
  • Ezhilmathi Krishnasamy
  • Massimiliano Leoni
  • Niclas Jansson
  • Johan Hoffman
Chapter

Abstract

We present an adaptive finite element method for time-resolved simulation of aerodynamics without any turbulence-model parameters, which is applied to a benchmark problem from the HiLiftPW-3 workshop to compute the flow past a JAXA Standard Model (JSM) aircraft model at realistic Reynolds numbers. The mesh is automatically constructed by the method as part of an adaptive algorithm based on a posteriori error estimation using adjoint techniques. No explicit turbulence model is used, and the effect of unresolved turbulent boundary layers is modeled by a simple parametrization of the wall shear stress in terms of a skin friction. In the case of very high Reynolds numbers, we approximate the small skin friction by zero skin friction, corresponding to a free-slip boundary condition, which results in a computational model without any model parameter to be tuned, and without the need for costly boundary-layer resolution. We introduce a numerical tripping-noise term to act as a seed for growth of perturbations; the results support that this triggers the correct physical separation at stall and has no significant pre-stall effect. We show that the methodology quantitavely and qualitatively captures the main features of the JSM experiment—aerodynamic forces and the stall mechanism—with a much coarser mesh resolution and lower computational cost than the state-of-the-art methods in the field, with convergence under mesh refinement by the adaptive method. Thus, the simulation methodology appears to be a possible answer to the challenge of reliably predicting turbulent-separated flows for a complete air vehicle.

Nomenclature

\(C_l\)

lift coefficient (dimensionless)

\(C_d\)

drag coefficient (dimensionless)

\(C_p\)

pressure coefficient (dimensionless)

h

diameter of tetrahedron in finite element mesh (m)

k

time step (s)

\(\mathbf {n}\)

normal unit vector (dimensionless)

P

computed pressure (Pa)

p

pressure (Pa)

q

pressure test function (Pa)

Re

Reynolds number (dimensionless)

t

time variable (s)

T

end time (s)

\(\mathbf {U}\)

computed velocity (\({\mathrm{m}\,\mathrm{s}^{-1}}\))

\(\mathbf {u}\)

velocity (\({\mathrm{m}\,\mathrm{s}^{-1}}\))

\(\mathbf {v}\)

velocity test function (\({\mathrm{m}\,\mathrm{s}^{-1}}\))

\(\mathbf {x}\)

space variable (m)

\(\alpha \)

angle of attack (dimensionless)

\(\beta \)

friction parameter (\({\mathrm{kg}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}}\))

\(\nu \)

kinematic viscosity (\({\mathrm{m}^{2}\,\mathrm{s}^{-1}}\))

\(\mathbf {\tau }\)

tangent unit vector (dimensionless)

Notes

Acknowledgements

This research has been supported by the European Research Council, the H2020 MSO4SC grant, the Swedish Research Council, the Swedish Foundation for Strategic Research, the Swedish Energy Agency, the Basque Excellence Research Center (BERC 2014–2017) program and ELKARTEK GENTALVE project by the Basque Government, the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323 and the Project of the Spanish Ministry of Economy and Competitiveness with reference MTM2013–40824 and La Caixa. We acknowledge the Swedish National Infrastructure for Computing (SNIC) at PDC—Center for High-Performance Computing for granting us access to the supercomputer resources Beskow.

References

  1. 1.
    FEniCS (2003) Fenics project. http://www.fenicsproject.org
  2. 2.
    Hoffman, J.: Computation of mean drag for bluff body problems using adaptive dns/les. SIAM J. Sci. Comput. 27(1), 184–207 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hoffman, J.: Adaptive simulation of the turbulent flow past a sphere. J. Fluid Mech. 568, 77–88 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hoffman, J.: Efficient computation of mean drag for the subcritical flow past a circular cylinder using general galerkin g2. Int. J. Numer. Meth. Fluids 59(11), 1241–1258 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hoffman, J., Jansson, N. (2010) A computational study of turbulent flow separation for a circular cylinder using skin friction boundary conditions. Ercoftac series, vol. 16. Springer, DordrechtGoogle Scholar
  6. 6.
    Hoffman, J., Johnson, C.: Computational Turbulent Incompressible Flow: Applied Mathematics Body and Soul, vol. 4. Springer, Berlin (2006)MATHGoogle Scholar
  7. 7.
    Hoffman, J., Johnson, C.: A new approach to computational turbulence modeling. Comput. Methods Appl. Mech. Eng. 195, 2865–2880 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hoffman, J., Johnson, C.: Computational turbulent incompressible flow. In: Applied Mathematics: Body and Soul, vol. 4. Springer, Berlin (2007)Google Scholar
  9. 9.
    Hoffman, J., Johnson, C.: Resolution of d’alembert’s paradox. J. Math. Fluid Mech., 10 Dec 2008. (Published Online First at www.springerlink.com)
  10. 10.
    Hoffman, J., Jansson, J., Jansson, N.: Fenics-hpc: automated predictive high-performance finite element computing with applications in aerodynamics. In: Proceedings of the 11th International Conference on Parallel Processing and Applied Mathematics, PPAM 2015. Lecture Notes in Computer Science (2015)Google Scholar
  11. 11.
    Hoffman, J., Jansson, J., Stöckli, M.: Unified continuum modeling of fluid-structure interaction. Math. Models Methods Appl. Sci. (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hoffman, J., Jansson, J., de Abreu, R.V., Degirmenci, N.C., Jansson, N., Müller, K., Nazarov, M., Spühler, J.H.: Unicorn: parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry. Comput. Fluids 80, 310–319 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hoffman, J., Jansson, J., Degirmenci, C., Jansson, N., Nazarov, M.: Unicorn: A Unified Continuum Mechanics Solver, Chap. 18. Springer, Berlin (2012)CrossRefGoogle Scholar
  14. 14.
    Hoffman, J., Jansson, J., Jansson, N., Abreu, R.V.D.: Towards a parameter-free method for high reynolds number turbulent flow simulation based on adaptive finite element approximation. Comput. Methods Appl. Mech. Eng. 288, 60–74 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hoffman, J., Jansson, J., Jansson, N., Nazarov, M.: Unicorn: a unified continuum mechanics solver. In: Automated Solutions of Differential Equations by the Finite Element Method. Springer, Berlin (2011)Google Scholar
  16. 16.
    Hoffman, J., Jansson, J., Jansson, N., Johnson, C., de Abreu, R.V.: Turbulent flow and fluid-structure interaction. In: Automated Solutions of Differential Equations by the Finite Element Method. Springer, Berlin (2011)Google Scholar
  17. 17.
    Hoffman, J., Jansson, J., Jansson, N., De Abreu, R.V., Johnson, C.: Computability and adaptivity in CFD. In: Stein, E., de Horz, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics (2016)Google Scholar
  18. 18.
    Houzeaux, G., Vázquez, M., Aubry, R., Cela, J.: A massively parallel fractional step solver for incompressible flows. J. Comput. Phys. 228(17), 6316–6332 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Huang, L., Huang, P.G., LeBeau, R.P.: Numerical study of blowing and suction control mechanism on naca 0012 airfoil. AIAA J. Aircr. (2004)CrossRefGoogle Scholar
  20. 20.
    Hunt, J.C., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows (1988)Google Scholar
  21. 21.
    Jansson, N., Hoffman, J., Jansson, J.: Framework for massively parallel adaptive finite element computational fluid dynamics on tetrahedral meshes. SIAM J. Sci. Comput. 34(1), C24–C41 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kirby, R.C.: FIAT: Numerical Construction of Finite Element Basis Functions, Chap. 13. Springer, Berlin (2012)CrossRefGoogle Scholar
  23. 23.
    Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)CrossRefGoogle Scholar
  24. 24.
    Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: FFC: The FEniCS Form Compiler, Chap. 11. Springer, Berlin (2012)CrossRefGoogle Scholar
  25. 25.
    Mellen, C.P., Frölich, J., Rodi, W.: Lessons from lesfoil project on large-eddy simulation of flow around an airfoil. AIAA J. 41, 573–581 (2003)CrossRefGoogle Scholar
  26. 26.
    Moin, P., You, D.: Active control of flow separation over an airfoil using synthetic jets. J. Fluids Struct. 24(8), 1349–1357 (2008)CrossRefGoogle Scholar
  27. 27.
    Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulation. Annu. Rev. Fluid Mech. 34, 349–374 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rumsey, C.: 3rd AIAA CFD High Lift Prediction Workshop (HiLiftPW-2) (2017). http://hiliftpw.larc.nasa.gov/
  29. 29.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer, Berlin (2005)MATHGoogle Scholar
  30. 30.
    Schlatter, P., Orlu, R.: Turbulent boundary layers at moderate reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534 (2012)CrossRefGoogle Scholar
  31. 31.
    Shan, H., Jiang, L., Liu, C.: Direct numerical simulation of flow separation around a naca 0012 airfoil. Comput. Fluids 34, 10961114 (2005)CrossRefGoogle Scholar
  32. 32.
    Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D.: Cfd vision 2030 study: a path to revolutionary computational aerosciences (2014)Google Scholar
  33. 33.
    Spalart, P.R.: Detached-eddy simulation. Annu Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  34. 34.
    Vilela de Abreu, R., Jansson, N., Hoffman, J.: Adaptive computation of aeroacoustic sources for a rudimentary landing gear. Int. J. Numer. Meth. Fluids 74(6), 406–421 (2014)Google Scholar
  35. 35.
    Witherden, F.D., Jameson, A.: Future directions of computational fluid dynamics. In: 23rd AIAA Computational Fluid Dynamics Conference, p. 3791 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Johan Jansson
    • 1
    • 2
  • Ezhilmathi Krishnasamy
    • 1
    • 2
  • Massimiliano Leoni
    • 1
    • 2
  • Niclas Jansson
    • 1
  • Johan Hoffman
    • 1
  1. 1.Computational Science and Technology CSC, KTHStockholmSweden
  2. 2.BCAM - Basque Center for Applied MathematicsBilbaoSpain

Personalised recommendations