Skip to main content

The Complexity of Tree Partitioning

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10389))

Included in the following conference series:

Abstract

Given a tree T on n vertices, and \(k, b, s_1, \ldots , s_b \in \mathbb {N}\), the Tree Partitioning problem asks if at most k edges can be removed from T so that the resulting components can be grouped into b groups such that the number of vertices in group i is \(s_i\), for \(i =1, \ldots , b\). The case when \(s_1=\cdots =s_b =n/b\), referred to as the Balanced Tree Partitioning problem, was shown to be \(\mathcal {NP}\)-complete for trees of maximum degree at most 5, and the complexity of the problem for trees of maximum degree 4 and 3 was posed as an open question. The parameterized complexity of Balanced Tree Partitioning was also posed as an open question in another work.

In this paper, we answer both open questions negatively. We show that Balanced Tree Partitioning (and hence, Tree Partitioning) is \(\mathcal {NP}\)-complete for trees of maximum degree 3, thus closing the door on the complexity of Balanced Tree Partitioning, as the simple case when T is a path is in \(\mathcal P\). In terms of the parameterized complexity of the problems, we show that both Balanced Tree Partitioning and Tree Partitioning are W[1]-complete. Finally, using a compact representation of the solution space for an instance of the problem, we present a dynamic programming algorithm for Tree Partitioning (and hence, for Balanced Tree Partitioning) that runs in subexponential-time \(2^{O(\sqrt{n})}\), adding a natural problem to the list of problems that can be solved in subexponential time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, Z., Feng, Q., Kanj, I., Xia, G.: The Complexity of Tree Partitioning. http://arxiv.org/abs/1704.05896

  2. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory of Computing Systems 39(6), 929–939 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbenz, P., van Lenthe, G., Mennel, U., Müler, R., Sala, M.: Multi-level \(\mu \)-finite element analysis for human bone structures. In: PARA 2006, pp. 240–250 (2006)

    Google Scholar 

  4. Bhatt, S., Leighton, F.: A framework for solving VLSI graph layout problems. Journal of Computer and System Sciences 28(2), 300–343 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boscznay, Á.: On the lower estimation of non-averaging sets. Acta Mathematica Hungariga 53(1-1), 155–157 (1989)

    Google Scholar 

  6. Chen, J., Kanj, I., Perkovic, L., Sedgwick, E., Xia, G.: Genus characterizes the complexity of certain graph problems: Some tight results. Journal of Computer and System Sciences 73(6), 892–907 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Flum, J., Grohe, M.: Machine-based methods in parameterized complexity theory. Theoretical Computer Science 339(2–3), 167–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7_32

    Chapter  Google Scholar 

  9. Demaine, E., Fomin, F., Hajiaghayi, M., Thilikos, D.: Subexponential parameterized algorithms on bounded-genus graphs and \(H\)-minor-free graphs. J. ACM 52, 866–893 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diestel, R.: Graph Theory, 4th edn. Springer (2012)

    Google Scholar 

  11. Downey, R., Fellows, M.: Fundamentals of Parameterized Complexity. Springer, New York (2013)

    Book  MATH  Google Scholar 

  12. Feldmann, A.: Balanced partitions of grids and related graphs. Ph.D. thesis, ETH, Zurich, Switzerland (2012)

    Google Scholar 

  13. Feldmann, A., Foschini, L.: Balanced partitions of trees and applications. Algorithmica 71(2), 354–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feldmann, A., Widmayer, P.: An \(O(n^4)\) time algorithm to compute the bisection width of solid grid graphs. Algorithmica 71(1), 181–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fomin, F., Kolay, S., Lokshtanov, D., Panolan, F., Saurabh, S.: Subexponential algorithms for rectilinear steiner tree and arborescence problems. In: SoCG 2016, pp. 39: 1–39: 15 (2016)

    Google Scholar 

  16. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  17. Hardy, G., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proceedings of the London Mathematical Society 17(2), 75–115 (1918)

    Article  MATH  Google Scholar 

  18. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. Journal of Computer and System Sciences 79(1), 39–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klein, P., Marx, D.: A subexponential parameterized algorithm for subset TSP on planar graphs. SODA 2014, 1812–1830 (2014)

    MathSciNet  Google Scholar 

  20. MacGregor, R.: On partitioning a graph: a theoretical and empirical study. Ph.D. thesis, University of California at Berkeley, California, USA (1978)

    Google Scholar 

  21. Räcke, H., Stotz, R.: Improved approximation algorithms for balanced partitioning problems. In STACS 2016, pp. 58: 1–58: 14 (2016)

    Google Scholar 

  22. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  23. van Bevern, R., Feldmann, A., Sorge, M., Suchý, O.: On the parameterized complexity of computing balanced partitions in graphs. Theory of Computing Systems 57(1), 1–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyad Kanj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

An, Z., Feng, Q., Kanj, I., Xia, G. (2017). The Complexity of Tree Partitioning. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62127-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62126-5

  • Online ISBN: 978-3-319-62127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics