Skip to main content

Seaweed Lipidomics in the Era of ‘Omics’ Biology: A Contemporary Perspective

  • Chapter
  • First Online:
Systems Biology of Marine Ecosystems

Abstract

Lipidomics, a branch of “omic” sciences, refers to the analysis of lipids on the systems level together with their interacting factors including expression of proteins involved in lipid metabolism and function and gene regulation. Seaweeds are one of the important ecosystem drivers that inhabit an unique aquatic environment being exposed to a diverse range of environmental fluctuations (salinity, light, desiccation, and temperature), pathogens, invasive species, and anthropogenic factors that affect their phenotype as well as acclimatory strategies. As a result of thriving in such diverse and extreme environments, they produce an array of unique bioactive, complex, exotic acyl lipids and fatty acids that are not generally present in terrestrial plants. Seaweeds have been extensively studied for their bioactive lipids mainly for their nutritionally important polyunsaturated fatty acids, oxylipins, and their pharmaceutical and biotechnological utilization. Most of the studies have been limited to the elucidation of lipid and fatty acids composition, their metabolic pathways, the genes and enzymes involved, as well as their roles in stress responses, innate immunity, and defense against pathogens. Although lipidomics has been extensively used in terrestrial plants and even microalgae to unravel their lipidome, functional annotation of unknown genes involved in lipid metabolism, correlation of genotype-phenotype, and understanding of the pleiotropic roles of lipids in cell development and biotic/abiotic stresses, only a few seaweeds have been studied with lipidomic approach. This chapter presents updated information on lipidomics, advanced analytical tools and techniques, and their applicability in seaweed studies along with its limitations. Further, an overview of how integrating lipidomics with allied sister branches of metabolomics, transcriptomics, and proteomics can help in the identification of unknown gene/protein functions and development of systems biology networks advancing our knowledge of lipid biochemistry in seaweed development and acclimation to stress conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Easa HS, Kornprobst J, Rizk AM (1995) Major sterol composition of some algae from Qatar. Phytochemistry 39:373–374

    Article  Google Scholar 

  • Al-Fadhli A, Wahidulla S, D’Souza L (2006) Glycolipids from the red alga Chondria armata (Kütz.) Okamura. Glycobiology 16:902–915

    Article  CAS  PubMed  Google Scholar 

  • Andreou A, Feussner I (2009) Lipoxygenases-structure and reaction mechanism. Phytochemistry 70:1504–1510

    Article  CAS  PubMed  Google Scholar 

  • Arnold TM, Targett NM, Tanner CE et al (2001) Evidence for methyl jasmonate-induced phlorotannin production in Fucus vesiculosus (Phaeophyceae). J Phycol 37(6):1026–1029

    Google Scholar 

  • Bano S, Uddin S, Ahmed VU (1990) Marine natural products part XV. An acetylated derivative of a new N-acylsphingosine from red alga Halymenia porphyroides. Planta Med 56:233–234

    Article  CAS  PubMed  Google Scholar 

  • Barbosa M, Collado-González M, Andrade PB et al (2015) Nonenzymatic α-linolenic acid derivatives from the sea: macroalgae as novel sources of phytoprostanes. J Agric Food Chem 63:6466–6474

    Article  CAS  PubMed  Google Scholar 

  • Banskota A, Stefanova R, Sperker S et al (2014) Lipids isolated from the cultivated red alga Chondrus crispus inhibit nitric oxide production. J Appl Phycol 26:1565–1571

    Article  CAS  Google Scholar 

  • Barbosa M, Valentão P, Andrade PB (2016) Biologically active oxylipins from enzymatic and nonenzymatic routes in macroalgae. Mar Drugs 14(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Biophysiol 37:911–915

    CAS  Google Scholar 

  • Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33:290–304

    Article  CAS  PubMed  Google Scholar 

  • Bouarab K, Adas F, Gaquerel E et al (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol 135:838–1848

    Article  Google Scholar 

  • Breen EP, Gouin SG, Murphy AF et al (2005) On the mechanism of mitochondrial uncoupling protein 1 function. J Biol Chem 281:2114–2119

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    Article  CAS  PubMed  Google Scholar 

  • Brügger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98

    Article  PubMed  CAS  Google Scholar 

  • Burri L, Hoem N, Banni S et al (2012) Marine omega-3 phospholipids: metabolism and biological activities. Int J Mol Sci 13:15401–15419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calder PC, Grimble RF (2002) Polyunsaturated fatty acids, inflammation and immunity. J Clin Nutr 56:14–19

    Article  CAS  Google Scholar 

  • Chan CX, Blouin NA, Zhuang Y et al (2012) Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J Phycol 48:1328–1342

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li M, Yang R et al (2016) Profiling lipidome changes of Pyropia haitanensis in short-term response to high-temperature stress. J Appl Phycol 28:1903–1913

    Article  CAS  Google Scholar 

  • Choi H, Proteau PJ, Byrum T et al (2012) Cymatherelactone and cymatherols A-C, polycyclic oxylipins from the marine brown alga Cymathere triplicata. Phytochemistry 73:134–141

    Article  CAS  PubMed  Google Scholar 

  • Christie WW (1993) Preparation of ester derivates of fatty acids for chromatographic analysis. In: Christie WW (ed) Advances in lipid methodology—II. Oily Press, Dundee, pp 69–111

    Google Scholar 

  • Cock JM, Coelho SM, Brownlee C et al (2010) The Ectoarpus genome sequence: insights into brown algal biology and the evolutionary diversity of the eukaryotes. New Phytol 188:1–4

    Article  CAS  PubMed  Google Scholar 

  • Collén J, Porcel B, Carré W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252

    Article  PubMed  PubMed Central  Google Scholar 

  • da Costa E, Melo T, Moreira ASP et al (2015) Decoding bioactive polar lipid profile of the macroalgae Codium tomentosum from a sustainable IMTA system using a lipidomic approach. Algal Res 12:388–397

    Article  Google Scholar 

  • Dembitsky VM (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35:1–51

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Rezanka T, Rozentsvet OA (1993) Lipid composition of three macrophytes from the Caspian Sea. Phytochemistry 33:1015–1019

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rozentsvet OA (1990) Phospholipid composition of some marine red algae. Phytochemistry 29:3149–3152

    Article  Google Scholar 

  • Dembitsky VM, Rozentsvet OA (1996) Distribution of polar lipids in some marine, brackish and freshwater green macrophytes. Phytochemistry 41:483–488

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rozentsvet OA, Pechenkina EE (1990) Glycolipids, phospholipids and fatty acids of brown algae species. Phytochemistry 29:3417–3421

    Article  CAS  Google Scholar 

  • Dennis EA (2009) Lipidomics joins the omics evolution. Proc Natl Acad Sci U S A 106:2089–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittami SM, Gravot A, Goulitquer S et al (2012) Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). Plant J 71:366–377

    CAS  PubMed  Google Scholar 

  • Dittami SM, Gravot A, Renault D (2011) Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. Plant Cell Environ 34:629–642

    Article  CAS  PubMed  Google Scholar 

  • Eichenberger W, Araki S, Muller DG (1993) Betaine lipids and phospholipids in brown algae. Phytochemistry 34:1323–1333

    Article  CAS  Google Scholar 

  • Ejsing CSE, Duchoslav J, Sampaio K et al (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78:6202–6214

    Article  CAS  PubMed  Google Scholar 

  • El-Baroty GS, El-Baz FK, Abd-Elmoein A et al (2011) Evaluation of glycolipids of some Egyptian marine algae as a source of bioactive substances. Int Res J Pharmacy 2:165–174

    CAS  Google Scholar 

  • El-Shoubaky GA, Moustafa AMY, Salem EAE (2008) Comparative phytochemical investigation of beneficial essential fatty acids on a variety of marine seaweeds algae. Res J Phytochem 2:18–26

    Article  CAS  Google Scholar 

  • El Baz FK, El Baroty GS, Abd El Baky HH et al (2013) Structural characterization and biological activity of sulfolipids from selected marine algae. Grasas Aceites 64:561–571

    Article  CAS  Google Scholar 

  • Fahy E, Subramaniam S, Brown HA et al (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  CAS  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fahy E, Cotter D, Sud M et al (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811:637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2014) Fisheries and Aquaculture Information and Statistics Services [WWW document]. http://www.fao.org/figis/. Accessed 26 July 2014

  • Fukushima A, Kusano M (2013) Recent progress in the development of metabolome databases for plant systems biology. Front Plant Sci 4:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Galloway AWE, Britton-Simmons KH, Duggins DO et al (2012) Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. J Phycol 48:956–965

    Article  PubMed  Google Scholar 

  • Gaquerel E, Hervé C, Labrière C et al (2007) Evidence for oxylipin synthesis and induction of a new polyunsaturated fatty acid hydroxylase activity in Chondrus crispus in response to methyl jasmonate. Biochim Biophys Acta 1771:565–575

    Google Scholar 

  • Gerwick WH, Bernart MW, Moghaddam MF et al (1990) Icosanoids from the Rhodophyta: a new metabolism in the algae. Hydrobiologia 204(205):621–628

    Article  Google Scholar 

  • Gerwick WH, Proteau PJ, Nagle DG et al (1993) Biologically active oxylipins from seaweeds. Hydrobiologia 260(261):653–665

    Article  Google Scholar 

  • Graeve M, Kattner G, Wiencke C et al (2002) Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar Ecol Prog Ser 231:67–74

    Article  CAS  Google Scholar 

  • Gravot A, Dittami SM, Rousvoal S et al (2010) Diurnal oscillations of metabolite abundances and gene analysis provide new insights into central metabolic processes of the brown alga Ectocarpus siliculosus. New Phytol 188:98–110

    Article  CAS  PubMed  Google Scholar 

  • Groisillier Z, Shao G, Michel S et al (2014) Mannitol metabolism in brown algae involves a new phosphatase family. J Exp Bot 65:559–570

    Article  CAS  PubMed  Google Scholar 

  • Gross RW, Han X (2011) Lipidomics at the interface of structure and function in systems biology. Chem Biol 18:284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haimi P, Uphoff A, Hermansson M, Somerharju P (2006) Software tools for analysis of mass spectrometric lipidome data. Anal Chem 78:8324–8331

    Article  CAS  PubMed  Google Scholar 

  • Hamberg M (1992) Metabolism of 6,9,12-octadecatrienoic acid in the red alga Lithothamnion coralliodes: mechanism of formation of a conjugated tetraene fatty acid. Biochem Biophys Res Commun 188:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Hamberg M, Gerwick WH (1993) Biosynthesis of vicinal dihydroxy fatty acids in the red alga Gracilariopsis lemaneiformis: identification of a sodium-dependent 12- lipoxygenase and a hydroperoxide isomerase. Arch Biochem Biophys 305:115–122

    Article  CAS  PubMed  Google Scholar 

  • Hammann M, Rempt M, Pohnert G et al (2016) Increased potential for wound activated production of prostaglandin E2 and related toxic compounds in non-native populations of Gracilaria vermiculophylla. Harmful Algae 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Han X, Jiang X (2009) A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications. Eur J Lipid Sci Technol 111:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Gross RW (2003) Global analysis of cellular lipidomes directly from crude extracts of biological samples by electrospray ionization mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178

    Article  CAS  PubMed  Google Scholar 

  • Harkewicz R, Dennis EA (2011) Applications of mass spectrometry to lipids and membranes. Annu Rev Biochem 80:301–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Article  CAS  PubMed  Google Scholar 

  • Hendriks MMWB, Eeuwijk FA, Jellema RH et al (2011) Data-processing strategies for metabolomics studies. Trends Anal Chem 30:1685–1698

    Article  CAS  Google Scholar 

  • Hofmann M, Eichenberger W (1997) Lipid and fatty acid composition of the marine brown alga Dictyopteris membranacea. Plant Cell Physiol 38:1046–1052

    Article  CAS  Google Scholar 

  • Hofmann M, Eichenberger W (1998) Radiolabelling studies on the lipid metabolism in the marine brown alga Dictyopteris membranacea. Plant Cell Physiol 39:508–515

    Article  CAS  Google Scholar 

  • Illijas IM, Indy JR, Yasui H et al (2009) Lipid and fatty acid composition of a little known and rarely collected Exophyllum wentii Weber- van Bosse from Bali island, Indonesia J Oleo Sci 58:103–110

    Google Scholar 

  • Jacquemoud D, Pohnert G (2015) Extraction and analysis of oxylipins from macroalgae illustrated on the example Gracilaria vermiculophylla. Methods Mol Biol 1308:159–172

    Article  PubMed  Google Scholar 

  • Kamenarska Z, Stefanov K, Dimitrova-Konaklieva S et al (2004) Chemical composition and biological activity of the brackish water green alga Cladophora Rivularis (L.) Hoek. Bot Mar 47:215–221

    Article  CAS  Google Scholar 

  • Kanamoto H, Takemura M, Ohyama K (2011) Identification of a cyclooxygenases gene from the red alga Gracilaria vermiculophylla and bioconversion of arachidonic acid to PGF in engineered Escherichia coli. Appl Microbiol Biotechnol 91:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Miho S, Adachi K et al (1996) Distribution of betaine lipids in marine algae. Phytochemistry 42:1341–1345

    Article  CAS  Google Scholar 

  • Kendel M, Wielgosz-Collin G, Bertrand S et al (2015) Lipid composition, fatty acids and sterols in the seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): an analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Mar Drugs 13:5606–5628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khotimchenko SV (2002) Distribution of glyceroglycolipids in marine algae and grasses. Chem Nat Compd 38:223–229

    Article  CAS  Google Scholar 

  • Khotimchenko SV (2003) The fatty acid composition of glycolipids of marine macrophytes. Russ J Mar Biol 29:126–128

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Klochkova NG, Vaśkovsky VE (1990) Polar lipids of marine macrophytic algae as chemotaxonomic markers. Biochem Syst Eco 18:93–101

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Kulikova IV (1999) Lipids of two species of brown algae of the genus Laminaria. Chem Nat Compd 35:17–20

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Kulikova IV, Vaśkovski VE (2000) Distribution of ceramidephosphoinositol in red seaweeds. Russ J Mar Biol 26:286–288

    Article  Google Scholar 

  • Khotimchenko SV, Vaśkovsky VE (2004) An inositol-containing sphingolipid from the red alga Gracilaria verrucosa. Russ J Bioorg Chem 30:168–171

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Vaśkovsky VE, Titlyanova TV (2002) Fatty acids from the Pacific coast of North California. Bot Mar 45:17–22

    Article  CAS  Google Scholar 

  • Khozin-goldberg I (2016) Lipid metabolism in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae, vol 6. Springer, Cham, pp 413–484

    Chapter  Google Scholar 

  • Khozin-goldberg I, Zvi C (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91–100

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Ta QV (2011) Potential beneficial effects of marine algal sterols on human health. In: Kim S (ed) Advances in food and nutrition research, marine medicinal foods: implications and applications, micro and macroalgae, vol 64. Elsevier, USQQQ, pp 191–198

    Chapter  Google Scholar 

  • Kim YH, Kim EH, Lee C et al (2007) Two new monogalactosyl diacylglycerols from brown alga Sargassum thunbergii. Lipids 42:395–399

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Dubacq TJ, Thomas J et al (1996) Seasonal variations in triacylglycerols and fatty acids in Fucus serratus. Phytochemistry 43:49–55

    Google Scholar 

  • Kishimoto K, Urade R, Ogawa T et al (2001) Nondestructive quantification of neutral lipids by thin-layer chromatography and laser-fluorescent scanning: suitable methods for “lipidome” analysis. Biochem Biophys Res Commun 281:657–662

    Article  CAS  PubMed  Google Scholar 

  • Kombrink E (2012) Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta 236:1351–1366

    Article  CAS  PubMed  Google Scholar 

  • Kousaka K, Ogi N, Akazawa Y et al (2003) Novel oxylipin metabolites from the brown alga Eisenia bicyclis. J Nat Prod 66:1318–1323

    Article  CAS  PubMed  Google Scholar 

  • Krupina MV, Dathe W (1991) Occurrence of jasmonic acid in the red alga Gelidium latifolium. Z Naturforsch 46:1127–1129

    CAS  Google Scholar 

  • Kulikova IV, Khotimchenko SV (2000) Lipids of different thallus regions of the brown alga Sargassum miyabei from the sea of Japan. Russ J Mar Biol 26:54–57

    Article  Google Scholar 

  • Kumar M, Kumari P, Gupta V et al (2010a) Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. J Exp Mar Biol Ecol 391:27–34

    Article  CAS  Google Scholar 

  • Kumar M, Kumari P, Gupta V et al (2010b) Oxidative stress induced biomarkers in marine macroalgae Ulva lactuca (Ulvales, Chlorophyta) under cadmium stress. Biometals 23:315–325

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Gupta V, Trivedi N et al (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194–201

    Article  CAS  Google Scholar 

  • Kumar M, Kuzhiumparambil U, Pernice M et al (2016) Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res 16:76–92

    Article  Google Scholar 

  • Kumari P, Kumar M, Gupta V et al (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120:749–757

    Article  CAS  Google Scholar 

  • Kumari P, Reddy CRK, Jha B (2011) Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal Biochem 415:134–144

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Kumar M, Reddy CRK et al (2013a) Algal lipids, fatty acids and sterols. In: Domínguez H (ed) Functional ingredients from algae for food and nutraceuticals. Woodhead Publishing Ltd, Cambridge, UK, pp 87–134

    Google Scholar 

  • Kumari P, Bijo AJ, Mantri VA et al (2013b) Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 86:44–56

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Reddy CRK, Jha B (2014a) Quantification of select endogenous hydroxy-oxylipins from tropical marine macroalgae. Mar Biotechnol 16:74–87

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Reddy CRK, Jha B (2014b) Nitrate and phosphate regimes induced lipidomic and biochemical alterations in the intertidal macroalga Ulva lactuca (Ulvophyceae, Chlorophyta). Plant Cell Physiol 55:52–63

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Reddy CRK, Jha B (2015) Methyl jasmonate-induced lipidomic and biochemical alterations in the intertidal macroalga Gracilaria dura (Gracilariaceae, Rhodophyta). Plant Cell Physiol 56:1877–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Künzler K, Eichenberger W (1997) Betaine lipids and zwitterionic phospholipids in plants and fungi. Phytochemistry 46:883–892

    Article  PubMed  Google Scholar 

  • Küpper FC, Gaquerel E, Boneberg E et al (2006) Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades. J Exp Bot 57:1991–1999

    Article  PubMed  CAS  Google Scholar 

  • Küpper FC, Gaquerel E, Cosse A et al (2009) Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant Cell Physiol 50:789–800

    Article  PubMed  CAS  Google Scholar 

  • Leavell MD, Leary JA (2006) Fatty acid analysis tool (FAAT): an FT-ICR MS lipid analysis algorithm. Anal Chem 78:5497–5503

    Article  CAS  PubMed  Google Scholar 

  • Li X, Fan X, Han L et al (2002) Fatty acids of some algae from the Bohai Sea. Phytochemistry 59:157–161

    Article  CAS  PubMed  Google Scholar 

  • Li M, Yang L, Bai Y et al (2014) Analytical methods in lipidomics and their applications. Anal Chem 86:161–175

    Article  CAS  PubMed  Google Scholar 

  • Lion U, Wiesemeier T, Weinberger F et al (2006) Phospholipases and galactolipases trigger oxylipin-mediated wound activated defence in the red alga Gracilaria chilensis against epiphytes. Chem Bio Chem 7:457–462

    Article  CAS  PubMed  Google Scholar 

  • Liu QY, Reith ME (1994) Isolation of a gametophyte-specific cDNA encoding a lipoxygenase from the red alga Porphyra purpurea. Mol Mar Biol Biotechnol 3:206–209

    CAS  PubMed  Google Scholar 

  • Lo JM, Wang WL, Chiang YM et al (2001) Ceramides from the Taiwan red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J Chinese Chem Soc (Taipei, Taiwan) 48:821–826

    Article  CAS  Google Scholar 

  • Loizides-Mangold U (2013) On the future of mass-spectrometry-based lipidomics. FEBS J 280:2817–2829

    Article  CAS  PubMed  Google Scholar 

  • Ma AC, Chen Z, Wang T et al (2014) Isolation of the molecular species of monogalactosyldiacylglycerols from brown edible seaweed Sargassum horneri and their inhibitory effects on triglyceride accumulation in 3T3-L1 adipocytes. J Agric Food Chem 62:11157–11162

    Article  CAS  PubMed  Google Scholar 

  • Maciel E, Leal MC, Lillebo AI et al (2016) Biopropspecting of marine macrophytes using MS-based lipidomics as a new approach. Mar Drugs 14:49–76

    Article  PubMed Central  CAS  Google Scholar 

  • Makewicz A, Gribi C, Eichenberger W (1997) Lipids of Ectocarpus fasciculatus (Phaeophyceae). Incorporation of [l-14C] Oleate and the role of TAG and MGDG in lipid metabolism. Plant Cell Physiol 38:952–960

    Article  CAS  Google Scholar 

  • Matyash V, Liebisch G, Kurzchalia TV et al (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo T, Alves E, Azevedo V et al (2015) Lipidomics as a new approach for the bioprospecting of marine macroalgae-unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res 8:181–191

    Article  Google Scholar 

  • Michalik L, Auwerx J, Berger JP et al (2006) Peroxisome proliferator-activated receptors. International Union of Pharmacology, LXI. Pharmacol Rev 58:726–741

    Article  CAS  PubMed  Google Scholar 

  • Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208

    Article  CAS  PubMed  Google Scholar 

  • Muller DG, Eichenberger W (1994) Betaine lipid content and species delimitation in Ectocarpus, Feldmannia and Hincksia (Ectocarpales, Phaeophyceae). Eur J Phycol 29:219–225

    Article  Google Scholar 

  • Nagle DG, Gerwick WH (1990) Constanolactones a and B, novel cyclopropyl hydroxyl eicosanoids from the temperate red alga Constantinea simplex. Tetrahed Lett 31:2995–2998

    Article  CAS  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M et al (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8(3):e57122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitsuji K, Arimoto A, Iwai K et al (2016) A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of ‘mozuku’ biolgy. DNA Res 23:561–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylund GM, Weinberger F, Rempt M et al (2011) Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS One 6(12):e29359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pati S, Nie B, Arnold RD et al (2016) Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed Chromatogr 30:695–709

    Article  CAS  PubMed  Google Scholar 

  • Pilar G, Olegario B, Rafael RR (2016) Occurrence of jasmonates during cystocarp development in the red alga Grateloupia imbricata. J Phycol 52(6):1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Proteau PJ, Gerwick WH (1993) Divinyl ethers and hydroxy fatty acids from three species of Laminaria (brown algae). Lipids 28:783–787

    Article  CAS  PubMed  Google Scholar 

  • Ragonese C, Tedone L, Beccaria M et al (2014) Characterisation of lipid fraction of marine macroalgae by means of chromatography techniques coupled to mass spectrometry. Food Chem 145:932–940

    Article  CAS  PubMed  Google Scholar 

  • Rempt M, Weinberger F, Grosser K et al (2012) Conserved and species-specific oxylipin pathways in the wound-activated chemical defense of the noninvasive red alga Gracilaria chilensis and the invasive Gracilaria vermiculophylla. Beilstein J Org Chem 8:283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter A, Goulitquer S, Salaün J et al (2008) Copper stress induces biosynthesis of octadecanoid and eicosanoid oxygenated derivatives in the brown algal kelp Laminaria digitata. New Phytol 180:809–821

    Article  CAS  PubMed  Google Scholar 

  • Ritter A, Dittami SM, Goulitquer S et al (2014) Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biol 14:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roche SA, Leblond JD (2010) Betaine lipids in chlorarachniophytes. Phycol Res 58 (4):298–305

    Google Scholar 

  • Rolim AEH, Henrique-Araújo R, Ferraz EG et al (2015) Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences. Gene 554:131–139

    Article  CAS  PubMed  Google Scholar 

  • Rousvoal S, Groisillier A, Dittami SM et al (2011) Mannitol-1-phosphate dehydrogenase activity in Ectocarpus siliculosus, a key role for mannitol synthesis in brown algae. Planta 233:261–273

    Article  CAS  PubMed  Google Scholar 

  • Rozentsvet OA, Dembitsky VM, Zuhikova VS (1995) Lipids from macrophytes of the middle Volga. Phytochemistry 38:1209–1213

    Article  CAS  Google Scholar 

  • Sanina NM, Goncharova SN, Kostetsky EY (2004) Fatty acid composition of individual polar lipid classes from marine macrophytes. Phytochemistry 65:721–730

    Article  CAS  PubMed  Google Scholar 

  • Sanina NM, Goncharova SN, Kostetsky EY (2008) Seasonal changes of fatty acid composition and thermotropic behavior of polar lipids from marine macrophytes. Phytochemistry 69:1517–1527

    Article  CAS  PubMed  Google Scholar 

  • Schreiner M (2006) Optimization of solvent extraction and direct transmethylation methods for the analysis of egg yolk. Lipids Int J Food Prop 9:573–581

    Article  CAS  Google Scholar 

  • Schwudke DJ, Oegema L, Burton E et al (2005) Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal Chem 78:585–595

    Article  CAS  Google Scholar 

  • Schwudke D, Hannich JT, Surendranath V et al (2007a) Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. Anal Chem 79: 4083–4093

    Google Scholar 

  • Schwudke D, Liebisch G, Herzog R et al (2007b) Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol 433:175–91

    Google Scholar 

  • Seo HS, Song JT, Cheong JJ et al (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A 98:4788–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenivasaiah PK, Rani S, Cayetano J et al (2012) IPAVS: integrated pathway resources, analysis and visualization system. Nucleic Acids Res 40:D803–D808

    Article  CAS  PubMed  Google Scholar 

  • Todd JS, Proteau PJ, Gerwick WH (1993) Egregiachlorides A-C: new chlorinated oxylipins from the marine brown alga Egregia menziesii. Tetrahedron Lett 34:7689–7692

    Article  CAS  Google Scholar 

  • Todd JS, Proteau PJ, Gerwick WH (1994) The absolute configuration of ecklonialactones a, B, and E, novel oxylipins from brown algae of the genera Ecklonia and Egregia. J Nat Prod 57:171–174

    Article  CAS  PubMed  Google Scholar 

  • Tonon T, Eveillard D, Prigent S et al (2011) Towards systems biology in brown algae to explore acclimation and adaptation to the shore environment. OMICS 12:883–892

    Article  CAS  Google Scholar 

  • Tremolieres A, Siegenthaler PA (1998) Role of acyl lipids in the function of photosynthetic membranes in higher plants. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer, Dordrecht, pp 145–173

    Google Scholar 

  • Van Meer G (2005) Cellular lipidomics. The EMBO J 24:3159–3165

    Article  PubMed  CAS  Google Scholar 

  • Vaśkovsky VE, Khotimchenko SV, Xia B et al (1996) Polar lipids and fatty acids of some marine macrophytes from the Yellow Sea. Phytochemistry 42:1347–1356

    Article  Google Scholar 

  • Vaz FM, Pras-Raves M, Bootsma AH et al (2015) Principles and practice of lipidomics. J Inherit Metab Dis 38:41–52

    Article  CAS  PubMed  Google Scholar 

  • Vegiopoulos A, Muller-Decker K, Strzoda D et al (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–1161

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang C, Han RH et al (2016) Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res 61:83–108

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Forner S, Strnad M et al (2012) Jasmonates in flower and seed development. Biochimie 95(1):79–85

    Article  PubMed  CAS  Google Scholar 

  • Weinberger F, Lion U, Delage L et al (2011) Up-regulation of lipoxygenase, phospholipase, and oxylipin-production in the induced chemical defense of the red alga Gracilaria chilensis against epiphytes. J Chem Ecol 37:677–686

    Article  CAS  PubMed  Google Scholar 

  • Wenk MR (2010) Lipidomics: new tools and applications. Cell 143:888–895

    Article  CAS  PubMed  Google Scholar 

  • Wiesemeier T, Jahn K, Pohnert G (2008) No evidence for the induction of brown algal chemical defense by the phytohormones jasmonic acid and methyl jasmonate. J Chem Ecol 34:1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Williams DE, Sturgeon CM, Roberge M et al (2007) Nigricanosides a and B, antimitotic glycolipids isolated from the green alga Avrainvillea nigricans collected in Dominica. J Am Chem Soc 129:5822–5823

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using Metabo analyst. Nat Protoc 6:743–760

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Chen D, Xu J et al (2011) Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS. J Appl Phycol 23:271–282

    Article  CAS  Google Scholar 

  • Ye N, Zhang X, Zhao F (2015) Saccharina genomes provide novel insight into kelp biology. Nat Commun 6:1–11

    Google Scholar 

  • Yetukuri L, Ekroos K, Vidal-Puig A et al (2008) Informatics and computational strategies for the study of lipids. Mol Bio Syst 4:121–127

    CAS  Google Scholar 

  • Zhou Z, MArepally SR, Nune DS et al (2011) Lipidome DB data calculation environment: online processing of direct-infusion mass spectral data for lipid profiles. Lipids 46:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumari, P. (2017). Seaweed Lipidomics in the Era of ‘Omics’ Biology: A Contemporary Perspective. In: Kumar, M., Ralph, P. (eds) Systems Biology of Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-62094-7_4

Download citation

Publish with us

Policies and ethics