Skip to main content

Oxidative Stress-Induced Bioprospecting of Microalgae

  • Chapter
  • First Online:
Book cover Systems Biology of Marine Ecosystems

Abstract

Microalgae are sunlight-driven cell factories found in diverse marine and freshwater environments. With simple growth requirements (light, CO2, N, P and K), microalgae produce various valuable products like carotenoids, antioxidants, fatty acids, enzymes, polymers, peptides, toxins and sterols. Their photosynthetic mechanism is similar to plants, but due to their simple cellular structure and submergence in an aqueous environment, in most cases, they have an efficient access to water, CO2 and other nutrients. In addition, their growth is faster and photosynthetic efficiency is higher compared to terrestrial crop plants. Their shorter generation time allows production of lipids and carbohydrates in large amounts over short periods of time, which can be easily converted into biofuels. Due to these reasons, microalgae are considered as an alternative renewable feedstock for biofuel production. In any organism, fluctuating environmental conditions trigger a series of physiological processes and generation of reactive oxygen species (ROS) which are highly reactive and damage proteins, lipids, carbohydrates and DNA, ultimately resulting into cellular toxicity. Stress-induced ROS accumulation is counteracted by cellular enzymatic and non-enzymatic antioxidants. Excessive ROS damage the ability of the cells to readily detoxify the reactive intermediates or to repair the resulting damage, ultimately leading to oxidative stress conditions. Recent studies suggest that oxidative stress is a mediator for increased accumulation of lipid and various bioactive metabolites in microalgae. This chapter provides comprehensive information on bioprospecting of microalgae under oxidative stress conditions, mainly for their carotenoid accumulation and biofuel potential. An overview of omics platform including genomics, transcriptomics, proteomics and metabolomics is also provided in the context of better understanding the stress response of microalgae at cellular level and using these advanced approaches for the development of microalgal biofactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderem A (2005) Systems biology: its practice and challenges. Cell 121:511–513

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA et al (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  PubMed  Google Scholar 

  • Aniya Y, Anders MW (1992) Activation of rat liver microsomal glutathione S-transferase by hydrogen peroxide: role for protein-dimer formation. Arch Biochem Biophys 296:611–616

    Article  CAS  PubMed  Google Scholar 

  • Araujo GS, Matos LJBL, Gonçalves LRB et al (2011) Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour Technol 102:5248–5250

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bai X, Song H, Lavoie M et al (2016) Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Sci Rep 6:25494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belghith T, Athmouni K, Bellassoued K et al (2016) Physiological and biochemical response of Dunaliella salina to cadmium pollution. J Appl Phycol 28:991–999

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Shaish A, Avron M (1989) Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91:1040–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennoun P (1998) Chlororespiration, sixteen years later. In: Rochais J, Goldschmidt M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer, Dordrecht, pp 675–683

    Google Scholar 

  • Bernal CB, Vázquez G, Quintal IB, Bussy AL (2008) Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water Air Soil Pollut 190:259–270

    Article  CAS  Google Scholar 

  • Bohutskyi P, Liu K, Nasr LK et al (2015) Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol 99:6139–6154

    Article  CAS  PubMed  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Boussiba S, Bing W, Yuan JP et al (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604

    Article  CAS  Google Scholar 

  • Bouvier F, Backhaus RA, Camara B (1998) Induction and control of chromoplast-specific carotenoid genes by oxidative stress. J Biol Chem 273:30651–30659

    Article  CAS  PubMed  Google Scholar 

  • Çakmak ZE, Ölmez TT, Çakmak T et al (2015) Antioxidant response of Chlamydomonas reinhardtii grown under different element regimes. Phycol Res 63:202–211

    Article  CAS  Google Scholar 

  • Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847

    Article  CAS  Google Scholar 

  • Chang WC, Zheng HQ, Chen CNN (2016) Comparative transcriptome analysis reveals a potential photosynthate partitioning mechanism between lipid and starch biosynthetic pathways in green microalgae. Algal Res 16:54–62

    Article  Google Scholar 

  • Chehregani A, Noori M, Yazdi HL (2009) Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol Environ Saf 72:1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Lee CH, Ko K et al (2016) Use of phenol-induced oxidative stress acclimation to stimulate cell growth and biodiesel production by the oceanic microalga Dunaliella salina. Algal Res 17:61–66

    Article  Google Scholar 

  • Chokshi K, Pancha I, Ghosh T et al (2016a) Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv 6:72269–72274

    Article  CAS  Google Scholar 

  • Chokshi K, Pancha I, Maurya R et al (2016b) Growth medium standardization and thermotolerance study of the freshwater microalga Acutodesmus dimorphus-a potential strain for biofuel production. J Appl Phycol 28:2687–2696

    Article  CAS  Google Scholar 

  • Chokshi K, Pancha I, Trivedi K et al (2015) Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour Technol 180:162–171

    Article  CAS  PubMed  Google Scholar 

  • Chu WL (2012) Biotechnological applications of microalgae. IeJSME 6:S24–S37

    Google Scholar 

  • Cirulis JT, Scott JA, Ross GM (2013) Management of oxidative stress by microalgae. Can J Physiol Pharmacol 91:15–21

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro EB, Antoniosi Filho NR (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sust Energ Rev 58:832–841

    Article  CAS  Google Scholar 

  • del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Einali A, Valizadeh J (2015) Propyl gallate promotes salt stress tolerance in green microalga Dunaliella salina by reducing free radical oxidants and enhancing β-carotene production. Acta Physiol Plant 37:1–11

    Article  CAS  Google Scholar 

  • El-Baky HHA, El Baz FK, El-Baroty GS (2009) Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta Physiol Plant 31:623–631

    Article  CAS  Google Scholar 

  • Eom H, Lee C-G, Jin E (2006) Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Yan C, Andre C et al (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390

    Article  CAS  PubMed  Google Scholar 

  • Flotow JV (1844) Beobachtungen Über Haematococcus pluvialis. Novorum Actorum Acad Caesareae Leopoldinae-Carolinae Naturae Curiosorum 20:413–606

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:81–96

    Article  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness P-C et al (2007) Hydrogenases and hydrogen Photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ et al (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guarnieri MT, Pienkos PT (2015) Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res 123:255–263

    Article  CAS  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9:625–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwak Y, Hwang YS, Wang B et al (2014) Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J Exp Bot 65:4317–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen C, Braune W, Greulich F (1993) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales) IV. Protection from photodynamic damage. J Photochem Photobiol B Biol 20:153–160

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge J (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Hardison RC, Alexandersson M, Cawley S et al (2003) Comparative genomics. PLoS Biol 1:e58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Q, Yang H, Wu L, Hu C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228

    Article  CAS  PubMed  Google Scholar 

  • Hong ME, Hwang SK, Chang WS et al (2015) Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber–Weiss reaction. Appl Microbiol Biotechnol 99:5203–5215

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Lee CG (2015) Microalgal systems biology for biofuel production. In: Algal Biorefineries. Springer International Publishing, Cham, pp 3–21

    Chapter  Google Scholar 

  • Hu CW, Chuang LT, Yu PC, Chen CNN (2013) Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem 138:2071–2078

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Li Y, Sommerfeld M et al (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376

    Article  CAS  Google Scholar 

  • Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114–121

    Article  CAS  PubMed  Google Scholar 

  • Jamers A, Van der Ven K, Moens L et al (2006) Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat Toxicol 80:249–260

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M (2000) In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 54:550–555

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N et al (1997a) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48:351–356

    Article  CAS  Google Scholar 

  • Kobayashi M, Kurimura Y, Kakizono T et al (1997b) Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J Ferment Bioeng 84:94–97

    Article  CAS  Google Scholar 

  • Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol Lett 21:265–269

    Article  CAS  Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660

    Article  CAS  Google Scholar 

  • Kullik I, Storz G (1994) Transcriptional regulators of the oxidative stress response in prokaryotes and eukaryotes. Redox Rep 1:23–29

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Gupta V, Trivedi N et al (2011a) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194–201

    Article  CAS  Google Scholar 

  • Kumar M, Gupta V, Kumari P et al (2011b) Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J Food Compos Anal 24:270–278

    Article  CAS  Google Scholar 

  • Kumar M, Kuzhiumparambil U, Pernice M et al (2016) Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res 16:76–92

    Article  Google Scholar 

  • Lee DY, Park J-J, Barupal DK, Fiehn O (2012) System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Mol Cell Proteomics 11:973–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263

    Article  CAS  PubMed  Google Scholar 

  • Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Huang Z, Li P et al (2012) Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms. J Exp Mar Bio Ecol 418–419:24–29

    Article  CAS  Google Scholar 

  • Lohr M, Im C-S, Grossman AR (2005) Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 138:490–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luis A (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  CAS  Google Scholar 

  • Lv H, Qu G, Qi X et al (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101:229–237

    Article  CAS  PubMed  Google Scholar 

  • Ma RYN, Chen F (2001a) Induction of astaxanthin formation by reactive oxygen species in mixotrophic culture of Chlorococcum sp. Biotechnol Lett 23:519–523

    Article  CAS  Google Scholar 

  • Ma RYN, Chen F (2001b) Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem 36:1175–1179

    Article  CAS  Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    Article  CAS  PubMed  Google Scholar 

  • Maurya R, Paliwal C, Ghosh T et al (2016) Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresour Technol 214:787–796

    Article  CAS  PubMed  Google Scholar 

  • Menon KR, Balan R, Suraishkumar GK (2013) Stress induced lipid production in Chlorella vulgaris: relationship with specific intracellular reactive species levels. Biotechnol Bioeng 110:1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller H, Claiborne A (1991) Peroxide modification of monoalkylated glutathione reductase. Stabilization of an active-site cysteine-sulfenic acid. J Biol Chem 266:19342–19350

    CAS  PubMed  Google Scholar 

  • Miller R, Wu G, Deshpande RR et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of Microalgal lipids and carotenoids. Front Microbiol 7:546

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Molnár I, Lopez D, Wisecaver JH et al (2012) Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*. BMC Genomics 13:576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Msanne J, Xu D, Konda AR et al (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59

    Article  CAS  PubMed  Google Scholar 

  • Mus F, Dubini A, Seibert M et al (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Baudet M, Cuiné S et al (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AV, Thomas-Hall SR, Malnoë A et al (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7:1965–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmstead ILD, Hill DRA, Dias DA et al (2013) A quantitative analysis of microalgal lipids for optimization of biodiesel and omega-3 production. Biotechnol Bioeng 110:2096–2104

    Article  CAS  PubMed  Google Scholar 

  • Osundeko O, Davies H, Pittman JK (2013) Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass Bioenergy 56:284–294

    Article  CAS  Google Scholar 

  • Osundeko O, Dean AP, Davies H, Pittman JK (2014) Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant Cell Physiol 55:1848–1857

    Article  CAS  PubMed  Google Scholar 

  • Paliwal C, Ghosh T, George B et al (2016) Microalgal carotenoids: potential nutraceutical compounds with chemotaxonomic importance. Algal Res 15:24–31

    Article  Google Scholar 

  • Pancha I, Chokshi K, George B et al (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154

    Article  CAS  PubMed  Google Scholar 

  • Pancha I, Chokshi K, Ghosh T et al (2015a) Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 193:315–323

    Article  CAS  PubMed  Google Scholar 

  • Pancha I, Chokshi K, Maurya R et al (2015b) Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 189:341–348

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Jha B (2013) Inductive responses of some organic metabolites for osmotic homeostasis in peanut (Arachis hypogaea L.) seedlings during salt stress. Acta Physiol Plant 35:2821–2832

    Article  CAS  Google Scholar 

  • Qin S, Liu G-X, Hu Z-Y (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem 43:795–802

    Article  CAS  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D et al (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  CAS  PubMed  Google Scholar 

  • Rai UN, Singh NK, Upadhyay AK, Verma S (2013) Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour Technol 136:604–609

    Article  CAS  PubMed  Google Scholar 

  • Ratha SK, Prasanna R (2012) Bioprospecting microalgae as potential sources of “green energy”-challenges and perspectives (review). Appl Biochem Microbiol 48:109–125

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Domínguez MC, Vaquero I, Obregón V et al (2015) Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J Appl Phycol 27:1099–1108

    Article  CAS  Google Scholar 

  • Sabatini SE, Juárez AB, Eppis MR et al (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Saf 72:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Saenz ME, Bisova K, Touloupakis E et al (2015) Evidences of oxidative stress during hydrogen photoproduction in sulfur-deprived cultures of Chlamydomonas reinhardtii. Int J Hydrog Energy 40:10410–10417

    Article  CAS  Google Scholar 

  • Saha SK, Moane S, Murray P (2013) Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour Technol 147:23–28

    Article  CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Shvets E, Fass E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaish A, Avron M, Pick U, Ben-Amotz A (1993) Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190:363–368

    Article  CAS  Google Scholar 

  • Singh P, Kumari S, Guldhe A et al (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sust Energ Rev 55:1–16

    Article  CAS  Google Scholar 

  • Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941

    Article  CAS  Google Scholar 

  • Tanaka S, Ikeda K, Miyasaka H et al (2011) Comparison of three Chlamydomonas strains which show distinctive oxidative stress tolerance. J Biosci Bioeng 112:462–468

    Article  CAS  PubMed  Google Scholar 

  • Telfer A (2005) Too much light? How β-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4:950–956

    Article  CAS  PubMed  Google Scholar 

  • Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tischer J (1936) Über das Euglenarhodon und andere Carotinoide einer roten Euglene. (Carotinoide der Süßwasseralgen, I. Teil.). Hoppe-Seyler’s Zeitschrift für Physiol. Chemie 239:257–269

    CAS  Google Scholar 

  • Toepel J, Illmer-Kephalides M, Jaenicke S et al (2013) New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics. Plant Biotechnol J 11:717–733

    Article  CAS  PubMed  Google Scholar 

  • Trivedi J, Aila M, Bangwal DP et al (2015) Algae based biorefinery-how to make sense? Renew Sust Energ Rev 47:295–307

    Article  CAS  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei 19:325–346

    Article  Google Scholar 

  • Vanderauwera S, Hoeberichts FA, Van Breusegem F (2009) Hydrogen peroxide-responsive genes in stress acclimation and cell death. In: Reactive oxygen species in plant signaling. Springer, Berlin Heidelberg, pp 149–164

    Chapter  Google Scholar 

  • Wang J, Sommerfeld M, Hu Q (2011) Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. J Appl Phycol 23:995–1003

    Article  CAS  Google Scholar 

  • Wang S-B, Chen F, Sommerfeld M, Hu Q (2004a) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17–29

    Article  CAS  PubMed  Google Scholar 

  • Wang S-B, Hu Q, Sommerfeld M, Chen F (2004b) Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 4:692–708

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Ge H, Liu T et al (2016a) Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. J Biotechnol 228:18–27

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, He B, Sun Z, Chen Y-F (2016b) Chemically enhanced lipid production from microalgae under low sub-optimal temperature. Algal Res 16:20–27

    Article  Google Scholar 

  • Wase N, Black PN, Stanley BA, DiRusso CC (2014) Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res 13:1373–1396

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Chen F, Chen G et al (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China Ser C Life Sci 51:1088–1093

    Article  CAS  Google Scholar 

  • Wienkoop S, Weiß J, May P et al (2010) Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Mol BioSyst 6:1018–1031

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Hong-ying H, Yu-ping Z (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour Technol 102:3098–3102

    Article  CAS  Google Scholar 

  • Yilancioglu K, Cokol M, Pastirmaci I et al (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One 9:e91957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Li D, Ding K et al (2016) Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction. Bioresour Technol 211:669–676

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Chen H, He CL, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8:e69225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Sun Z, Sun P et al (2014) Microalgal carotenoids: beneficial effects and potential in human health. Food Funct 5:413–425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

CSIR-CSMCRI Registration Number: 115/2016. KC acknowledges AcSIR for his Ph.D. enrolment. KC and IP acknowledge CSIR-SRF and CSC-0203 for their funding support. Dr. Arvind Kumar, DC, SMC, is gratefully acknowledged for his motivation and constant support. Authors acknowledge the continuous support of all present and past laboratory members. Authors are also thankful to editors for providing an opportunity to write this chapter. The authors apologize to all researchers whose relevant work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chokshi, K., Pancha, I., Ghosh, A., Mishra, S. (2017). Oxidative Stress-Induced Bioprospecting of Microalgae. In: Kumar, M., Ralph, P. (eds) Systems Biology of Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-62094-7_13

Download citation

Publish with us

Policies and ethics