Skip to main content

Towards Mathematical AI via a Model of the Content and Process of Mathematical Question and Answer Dialogues

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10383))

Abstract

This paper outlines a strategy for building semantically meaningful representations and carrying out effective reasoning in technical knowledge domains such as mathematics. Our central assertion is that the semi-structured Q&A format, as used on the popular Stack Exchange network of websites, exposes domain knowledge in a form that is already reasonably close to the structured knowledge formats that computers can reason about. The knowledge in question is not only facts – but discursive, dialectical, argument for purposes of proof and pedagogy. We therefore assert that modelling the Q&A process computationally provides a route to domain understanding that is compatible with the day-to-day practices of mathematicians and students. This position is supported by a small case study that analyses one question from Mathoverflow in detail, using concepts from argumentation theory. A programme of future work, including a rigorous evaluation strategy, is then advanced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://stackexchange.com/sites#questions.

  2. 2.

    http://mathoverflow.net/q/12732.

  3. 3.

    http://mathoverflow.net/q/34044.

  4. 4.

    At this point, the discussion becomes multi-threaded, since comments can now attach to the answer as well.

  5. 5.

    Intuitively, upper-triangular \(2\times 2\) matrices have one element that is zero, so the subgroup has one codimension in \(\text {GL}_2(\mathbf C)\), namely, a copy of \(\mathbf C\). The fact that the index is infinite follows (but an algebraic proof is also straightforward). For an example of an infinite group and a subgroup with finite index, consider \(\mathbf Z\) and \(2\mathbf Z\): in this case, the group is equal to the union of cosets.

  6. 6.

    https://www.authorea.com/users/5713/articles/51708-understanding-a-dataset- arxiv-org/_show_article.

  7. 7.

    https://research.googleblog.com/2017/05/coarse-discourse-dataset-for.html.

References

  1. Aberdein, A.: The informal logic of mathematical proof. In: van Kerkhove, B., van Bendegem, J.P., (eds.) Perspectives on Mathematical Practices: Bringing Together Philosophy of Mathematics, Sociology of Mathematics, and Mathematics Education. Logic, Epistemology, and the Unity of Science, vol. 5, pp. 135–151. Springer, Netherlands (2007)

    Google Scholar 

  2. Anonymous: the QED manifesto. In: Bundy, A. (ed.) CADE 1994. LNCS(LNAI), vol. 814, pp. 238–251. Springer, Heidelberg (1994). doi:10.1007/3-540-58156-1_17

  3. Barany, M.: ‘[B]ut this is blog maths and we’re free to make up conventions as we go along’: Polymath1 and the modalities of ‘massively collaborative mathematics’. In: Proceedings of the 6th International Symposium on Wikis and Open Collaboration. ACM (2010)

    Google Scholar 

  4. Berners-Lee, T., Fischetti, M.: Weaving the Web: The original design and ultimate destiny of the World Wide Web by its inventor. Harper Information (2000)

    Google Scholar 

  5. Budzynska, K., Janier, M., Reed, C., Saint-Dizier, P., Stede, M., Yaskorska, O.: A model for processing illocutionary structures and argumentation in debates. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland, 26–31 May 2014, pp. 917–924 (2014)

    Google Scholar 

  6. Bundy, A.: The interaction of representation and reasoning. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 469(2157) (2013)

    Google Scholar 

  7. Buscaldi, D., Rosso, P.: Mining knowledge from Wikipedia for the question answering task. In: Proceedings of the International Conference on Language Resources and Evaluation, pp. 727–730 (2006)

    Google Scholar 

  8. Caprotti, O., Saludes, J.: The GF mathematical grammar library: from openmath to natural languages. In: Joint Proceedings of the 24th Workshop on OpenMath and the 7th Workshop on Mathematical User Interfaces (MathUI), p. 49. Citeseer (2012)

    Google Scholar 

  9. Carrera, Á., Iglesias, C.A.: A systematic review of argumentation techniques for multi-agent systems research. Artif. Intell. Rev. 44(4), 509–535 (2015)

    Article  Google Scholar 

  10. Cramer, M., Koepke, P., Schröder, B.: Parsing and disambiguation of symbolic mathematics in the naproche system. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS, vol. 6824, pp. 180–195. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22673-1_13

    Chapter  Google Scholar 

  11. Ferrucci, D., et al.: Building Watson: an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)

    Google Scholar 

  12. Ganesalingam, M., Gowers, W.: A fully automatic theorem prover with human-style output. J. Autom. Reason, 1–39 (2016)

    Google Scholar 

  13. Ganesalingam, M.: The Language of Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  14. Ginev, D.: The structure of mathematical expressions. Master’s thesis, Jacobs University, Bremen, Germany (2011)

    Google Scholar 

  15. Harrison, J., Urban, J., Wiedijk, F.: Preface: Twenty years of the QED manifesto. J. Formalized Reason. 9(1), 1–2 (2016)

    MathSciNet  Google Scholar 

  16. Hu, Y., Wan, X.: Mining and Analyzing the Future Works in Scientific Articles. CoRR abs/1507.02140 (2015)

    Google Scholar 

  17. Juršič, M., Cestnik, B., Urbančič, T., Lavrač, N.: Cross-domain literature mining: finding bridging concepts with crossbee. In: Proceedings of the 3rd International Conference on Computational Creativity, pp. 33–40 (2012)

    Google Scholar 

  18. Kaliszyk, C., Urban, J., Vyskočil, J., Geuvers, H.: Developing corpus-based translation methods between informal and formal mathematics [Poster of [19]]. http://cl-informatik.uibk.ac.at/cek/docs/14/ckjujvhg-cicm14-poster.pdf

  19. Kaliszyk, C., Urban, J., Vyskočil, J., Geuvers, H.: Developing corpus-based translation methods between informal and formal mathematics: project description. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 435–439. Springer, Cham (2014). doi:10.1007/978-3-319-08434-3_34

    Chapter  Google Scholar 

  20. Keats, J.: To George and Tom Keats. In: Rollins, H.E. (ed.) The Letters of John Keats, vol. 1, pp. 191–194. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  21. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press, Cambridge ([1976] 2015)

    Google Scholar 

  22. Lawrence, J., Reed, C., Allen, C., McAlister, S., Ravenscroft, A., Bourget, D.: Mining arguments from 19th century philosophical texts using topic based modelling. In: Proceedings of the First Workshop on Argumentation Mining, pp. 79–87. Citeseer (2014)

    Google Scholar 

  23. Levesque, H., Davis, E., Morgenstern, L.: The winograd schema challenge. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of the Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning. AAAI Press (2012)

    Google Scholar 

  24. Liu, J., Wang, Q., Lin, C.Y., Hon, H.W.: Question difficulty estimation in community question answering services. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 85–90. Association for Computational Linguistics (2013)

    Google Scholar 

  25. Macagno, F., Walton, D.: Argument from analogy in law, the classical tradition, and recent theories. Philos. Rhetoric 42(2), 154–182 (2009)

    Article  Google Scholar 

  26. Martin, U., Pease, A.: What does mathoverflow tell us about the production of mathematics? In: SOHUMAN, 2nd International Workshop on Social Media for Crowdsourcing and Human Computation, at ACM Web Science 1, Paris, May 2013

    Google Scholar 

  27. Martin, U., Pease, A., Corneli, J.: Bootstrapping the next generation of mathematical social machines. In: Kuper, L., Atkey, B. (eds.) Off the Beaten Track Workshop at POPL, UPMC Paris, 21 January 2017. ACM (2017)

    Google Scholar 

  28. Mendes Rodrigues, E., Milic-Frayling, N.: Socializing or knowledge sharing?: characterizing social intent in community question answering. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1127–1136. ACM (2009)

    Google Scholar 

  29. Miller, B.R.: Strategies for Parallel Markup. CoRR abs/1507.00524 (2015)

    Google Scholar 

  30. Nuamah, K., Bundy, A., Lucas, C.: Functional inferences over heterogeneous data. In: Ortiz, M., Schlobach, S. (eds.) RR 2016. LNCS, vol. 9898, pp. 159–166. Springer, Cham (2016). doi:10.1007/978-3-319-45276-0_12

    Chapter  Google Scholar 

  31. Pease, A., Martin, U.: Seventy four minutes of mathematics: An analysis of the third Mini-Polymath project. In: Proceedings of AISB/IACAP 2012, Symposium on Mathematical Practice and Cognition II (2012)

    Google Scholar 

  32. Pease, A., Lawrence, J., Budzynska, K., Corneli, J., Reed, C.: Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artif. Intell. 246, 181–219 (2017)

    Article  MathSciNet  Google Scholar 

  33. Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in texts: A survey. Int. J. Cogn. Inf. Nat. Intell. (IJCINI) 7(1), 1–31 (2013)

    Article  Google Scholar 

  34. Schneider, D., Witbrock, M.J.: Semantic construction grammar: bridging the NL/Logic divide. In: Proceedings of the 24th International Conference on World Wide Web, pp. 673–678. ACM (2015)

    Google Scholar 

  35. Schoenfeld, A.H.: Mathematical Problem Solving. Academic Press (1985)

    Google Scholar 

  36. Sowa, J.F., Majumdar, A.K.: Analogical reasoning. In: Ganter, B., Moor, A., Lex, W. (eds.) ICCS-ConceptStruct 2003. LNCS, vol. 2746, pp. 16–36. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45091-7_2

    Chapter  Google Scholar 

  37. Stahl, G.: Group Cognition: Computer Support for Building Collaborative Knowledge. MIT Press, Cambridge (2006)

    Google Scholar 

  38. Sussman, G.J.: Why programming is a good medium for expressing poorly understood and sloppily formulated ideas. In: OOPSLA 2005: Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, p. 6. ACM (2005)

    Google Scholar 

  39. Tanswell, F.: A problem with the dependence of informal proofs on formal proofs. Philosophia Mathematica 23(3), 295 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tausczik, Y.R., Kittur, A., Kraut, R.E.: Collaborative problem solving: a study of mathoverflow. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, CSCW 2014, pp. 355–367. ACM, New York (2014)

    Google Scholar 

  41. Turing, A.M.: Intelligent machinery, a heretical theory. Philosophia Math. 4(3), 256–260 ([1951] 1996)

    Google Scholar 

  42. Walton, D.: How can logic best be applied to arguments? Logic J. IGPL 5(4), 603–614 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wiedijk, F.: The QED manifesto revisited. Stud. Logic, Grammar Rhetoric 10(23), 121–133 (2007)

    Google Scholar 

Download references

Acknowledgements

Martin and Corneli were support by Martin’s EPSRC fellowship award “The Social Machine of Mathematics” (EP/K040251/1); Murray-Rust was supported by “SOCIAM - the theory and practice of Social Machines” (EP/J017728/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Corneli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Corneli, J., Martin, U., Murray-Rust, D., Pease, A. (2017). Towards Mathematical AI via a Model of the Content and Process of Mathematical Question and Answer Dialogues. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds) Intelligent Computer Mathematics. CICM 2017. Lecture Notes in Computer Science(), vol 10383. Springer, Cham. https://doi.org/10.1007/978-3-319-62075-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62075-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62074-9

  • Online ISBN: 978-3-319-62075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics