Skip to main content

Image Quality

  • Chapter
  • First Online:
Book cover Maxillofacial Cone Beam Computed Tomography

Abstract

Image quality in CBCT can be objectively defined or subjectively judged. Objective definition relies on parameters such as noise, spatial and contrast resolution, as well as artifact content of the images. Knowledge on these parameters and their influence on the resulting images is essential for correct reading of the images in a clinical setting to avoid misinterpretation. This chapter explains and discusses these objective quality parameters, their impact on the CBCT-images, as well as their clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Brüllmann D, Schulze RK (2015) Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dentomaxillofac Radiol 44:20140204

    Article  PubMed  Google Scholar 

  • Bryant JA, Drage NA, Richmond S (2008) Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system. Dentomaxillofac Radiol 37:365–374

    Article  CAS  PubMed  Google Scholar 

  • Chakeres DW (1984) Clinical significance of partial volume averaging of the temporal bone. Am J Neuroradiol 5:297–302

    CAS  PubMed  Google Scholar 

  • Chen L, Shaw CC, Altunbas MC, Lai CJ, Liu X (2008) Spatial resolution properties in cone beam CT: a simulation study. Med Phys 35:724–734

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi K (2006) Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 51:R5–R27

    Article  PubMed  Google Scholar 

  • Draenert FG, Coppenrath E, Herzog P et al (2007) Beam hardening artifacts occur in dental implant scans with the NewTom come beam CT but not with the dental 4-row multidetector CT. Dentomaxillofac Radiol 36:198–203

    Article  CAS  PubMed  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  • Geyer LL, Schoepf J, Meinel FG, Nance JW, Bastarrika G, Leipsic JA, Paul NS, Rengo M, Laghi A, De Cecco CN (2015) State of the art: iterative CT reconstruction techniques. Radiology 276:339–357

    Article  PubMed  Google Scholar 

  • Glover GH, Pelc NJ (1980) Nonlinear partial volume artifacts in x-ray computed tomography. Med Phys 7:238–248

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Arai Y, Iwai K et al (2003) A comparison of a new limited cone beam computed tomography machine for dental use with a multi-detector row helical CT machine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95:371–377

    Article  PubMed  Google Scholar 

  • Hashimoto K, Katsumata S, Araki M et al (2006) Comparison of image performance between cone beam computed tomography for dental use and four-row multi-detector helical CT. J Oral Sci 48:27–34

    Article  PubMed  Google Scholar 

  • Hsieh J (2002) Computed tomography: principles, design, artifacts, and recent advances. SPIE Optical Engineering Press, Bellingham, WA

    Google Scholar 

  • Joseph PM, Spital RD (1981) The exponential edge-gradient effect in x-ray computed tomography. Phys Med Biol 26:473–487

    Article  CAS  PubMed  Google Scholar 

  • Kalender WA (2005) Computed tomography. Fundamentals, system technology, image quality, applications, 2nd edn. Puplicis Corporate Publishing, Erlangen

    Google Scholar 

  • Kalender W (2006) X-ray computed tomography. Phys Med Biol 51:R29–R43

    Article  PubMed  Google Scholar 

  • Kalender WA, Kyriakou Y (2007) Flat-detector computed tomography (FD-CT). Eur Radiol 17:2767–2779

    Article  PubMed  Google Scholar 

  • Lagravere MO, Carey J, Ben-Zvi M, Packota GV, Major PW (2008) Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3G cone beam computed tomography unit. Dentomaxillofac Radiol 37:305–308

    Article  CAS  PubMed  Google Scholar 

  • Loubele M, Maes F, Jacobs R, van Steenberghe D, White SC, Suetens P (2008) Comparative study of image quality for MSCT and CBCT scanners for dentomaxillofacial radiology applications. Radiat Prot Dosim 129:222–226

    Article  CAS  Google Scholar 

  • Mah P, Reeves TE, McDavid WD (2010) Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol 39:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molteni R (2013) Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 116:105–119

    Article  PubMed  Google Scholar 

  • Mueller K (1998) Fast and accurate three-dimensional reconstruction from cone-beam projection data using algebraic methods. Ph.D. thesis, Ohio State University, Columbus

    Google Scholar 

  • Nackaerts O, Maes F, Yan H, Couto Souza P, Pauwels R, Jacobs R (2011) Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res 22:873–879

    Article  PubMed  Google Scholar 

  • Pauwels R, Stamatakis H, Manousaridis G, Walker A, Michielsen K, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K (2011) Development and applicability of a quality control phantom for dental cone-beam CT. J Appl Clin Med Phys 12:3478

    Article  PubMed  Google Scholar 

  • Qu XM, Li G, Ludlow JB, Zhang ZY, Ma XC (2010) Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:770–776

    Article  PubMed  Google Scholar 

  • Schulze RK, Berndt D, d’Hoedt B (2010) On cone-beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res 21:100–107

    Article  PubMed  Google Scholar 

  • Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E (2011) Artefacts in CBCT: a review. Dentomaxillofac Radiol 40:265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siewerdsen JH, Jaffray JH (2001) Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys 28:220–231

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen A, Kiljunen T, Käser Y, Peltola J, Kortesniemi M (2009) Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol 38:367–378

    Article  CAS  PubMed  Google Scholar 

  • Tuy K (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43:546–552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, R., Scarfe, W.C., Molteni, R., Mozzo, P. (2018). Image Quality. In: Scarfe, W., Angelopoulos, C. (eds) Maxillofacial Cone Beam Computed Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-62061-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62061-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62059-6

  • Online ISBN: 978-3-319-62061-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics