Skip to main content

Image-Guided Surgical Navigation

  • Chapter
  • First Online:
Maxillofacial Cone Beam Computed Tomography

Abstract

Registration is the transfer of geometrical knowledge from the outside, be it a general anatomical atlas, or individual image data, and the patient’s anatomy into a common coordinate system. First attempts to register atlas-based knowledge into intraoperative physical space were performed 100 years ago (Al-Rodhan and Kelly 1992). With the availability of medical image data, patient individual information was registered to the patient (Spiegel and Wycis 1962). With the possibility of registering patient individual anatomical information into the operative environment, methods were developed to transfer also a preoperative surgical planning that was performed based on the image data. From this point on we can call the whole process “image-guided surgery.” The tasks of a system for image-guided surgery based on patient individual image data are:

  • To give a coordinate system to the physical body, hence creating a patient space.

  • To give a coordinate system to the image data, hence creating an image space.

  • To create a transform, that accurately assigns a point in image space to the corresponding anatomical point in patient space. This process is called registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Rodhan NR, Kelly PJ (1992) Pioneers of stereotactic neurosurgery. Stereotact Funct Neurosurg 58:60–66

    Article  CAS  PubMed  Google Scholar 

  • Arnheiter C, Scarfe WC, Farman AG (2006) Trends in maxillofacial cone-beam computed tomography usage. Oral Radiol 22:80–85

    Article  Google Scholar 

  • Barnett GH, Miller DW, Weisenberger J (1999) Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases. J Neurosurg 91:569–576

    Article  CAS  PubMed  Google Scholar 

  • Bartling SH, Leinung M, Graute J, Rodt T, Dullin C, Becker H, Lenarz T, Stover T, Majdani O (2007) Increase of accuracy in intraoperative navigation through high-resolution flat-panel volume computed tomography: experimental comparison with multislice computed tomography-based navigation. Otol Neurotol 28:129–134

    Article  PubMed  Google Scholar 

  • Batra PS, Manes RP, Ryan MW, Marple BF (2011) Prospective evaluation of intraoperative computed tomography imaging for endoscopic sinonasal and skull-base surgery. Int Forum Allergy Rhinol 1:481–487

    Article  PubMed  Google Scholar 

  • Besl PJ, Mckay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256

    Article  Google Scholar 

  • Black PM, Moriarty T, Alexander E III, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41: `831–842

    Article  CAS  PubMed  Google Scholar 

  • Bou Serhal CB, van Steenberghe D, Quirynen M, Jacobs R (2001) Localisation of the mandibular canal using conventional spiral tomography: a human cadaver study. Clin Oral Implants Res 12:230–236

    Article  CAS  PubMed  Google Scholar 

  • Bou Serhal C, Jacobs R, Flygare L, Quirynen M, van Steenberghe D (2002) Perioperative validation of localisation of the mental foramen. Dentomaxillofac Radiol 31:39–43

    Article  CAS  PubMed  Google Scholar 

  • Brief J, Edinger D, Hassfeld S, Eggers G (2005) Accuracy of image-guided implantology. Clin Oral Implants Res 16:495–501

    Article  PubMed  Google Scholar 

  • Casap N, Wexler A, Persky N, Schneider A, Lustmann J (2004) Navigation surgery for dental implants: assessment of accuracy of the image guided implantology system. J Oral Maxillofac Surg 62:116–119

    Article  PubMed  Google Scholar 

  • Di Giacomo GA, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL (2005) Clinical application of stereolithographic surgical guides for implant placement: preliminary results. J Periodontol 76:503–507

    Article  PubMed  Google Scholar 

  • Draenert FG, Coppenrath E, Herzog P, Müller S, Mueller-Lisse UG (2007) Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dentomaxillofac Radiol 36:198–203

    Article  CAS  PubMed  Google Scholar 

  • Ecke U, Maurer J, Boor S, Khan M, Mann WJ (2003) Fehlerquellen der Navigation in der lateralen Schädelbasischirurgie. Darstellung von Einflussfaktoren in der Praxis. HNO 51:386–393

    Article  CAS  PubMed  Google Scholar 

  • Egbert N, Cagna DR, Ahuja S, Wicks RA (2015) Accuracy and reliability of stitched cone-beam computed tomography images. Imaging Sci Dent 45(1):41–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggers G, Mühling J, Marmulla R (2005a) Template-based registration for image guided maxillofacial surgery. J Oral Maxillofac Surg 63:1330–1336

    Article  PubMed  Google Scholar 

  • Eggers G, Haag C, Hassfeld S (2005b) Image-guided removal of foreign bodies. Br J Oral Maxillofac Surg 43:404–409

    Article  CAS  PubMed  Google Scholar 

  • Eggers G, Mühling J, Marmulla R (2006) Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg 35:1081–1095

    Article  CAS  PubMed  Google Scholar 

  • Eggers G, Klein J, Welzel T, Mühling J (2008) Geometric accuracy of digital volume tomography and conventional computed tomography. Br J Oral Maxillofac Surg 46:639–644

    Article  CAS  PubMed  Google Scholar 

  • Eggers G, Mühling J, Hofele C (2009a) Clinical use of navigation based on cone-beam com-puter tomography in maxillofacial surgery. Br J Oral Maxillofac Surg 47:450–454

    Article  PubMed  Google Scholar 

  • Eggers G, Senoo H, Kane G, Mühling J (2009b) The accuracy of image guided surgery based on cone beam computer tomography image data. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:e41–e48

    Article  PubMed  Google Scholar 

  • Eufinger H, König S, Eufinger A (1997) The role of alveolar ridge width in dental implantology. Clin Oral Investig 1:169–177

    Article  CAS  PubMed  Google Scholar 

  • Fialkov JA, Phillips JH, Gruss JS, Kassel EE, Zuker RM (1992) A stereotactic system for guiding complex craniofacial reconstruction. Plast Reconstr Surg 89:340–345

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17:694–702

    Article  CAS  PubMed  Google Scholar 

  • Fortin T, Champleboux G, Bianchi S, Buatois H, Coudert JL (2002) Precision of transfer of preoperative planning for oral implants based on cone-beam CT-scan images through a robotic drilling machine. Clin Oral Implants Res 13:651–656

    Article  PubMed  Google Scholar 

  • Gaggl A, Schultes G, Kärcher H (2001) Navigational precision of drilling tools preventing damage to the mandibular canal. J Craniomaxillofac Surg 29:271–275

    Google Scholar 

  • Gellrich NC, Schramm A, Hammer B, Rojas S, Cufi D, Lagrèze W, Schmelzeisen R (2002) Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg 110:1417–1429

    Article  PubMed  Google Scholar 

  • Gröbe A, Weber C, Schmelzle R, Heiland M, Klatt J, Pohlenz P (2009) The use of navigation (BrainLAB Vector vision(2)) and intraoperative 3D imaging system (Siemens Arcadis Orbic 3D) in the treatment of gunshot wounds of the maxillofacial region. Oral Maxillofac Surg 13(3):153–158

    Article  PubMed  Google Scholar 

  • Hassfeld S, Mühling J, Zöller J (1995) Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg 24:111–119

    Article  CAS  PubMed  Google Scholar 

  • Hassfeld S, Streib S, Sahl H, Stratmann U, Fehrentz D, Zöller J (1998) Low-dose-Computertomographie des Kieferknochens in der präimplantologischen Diagnostik. Mund Kiefer Gesichtschir 2:188–193

    Article  CAS  PubMed  Google Scholar 

  • Hatcher DC, Dial C, Mayorga C (2003) Cone beam CT for pre-surgical assessment of implant sites. J Calif Dent Assoc 31:825–833

    PubMed  Google Scholar 

  • Heiland M, Habermann CR, Schmelzle R (2004a) Indications and limitations of intraoperative navigation in maxillofacial surgery. J Oral Maxillofac Surg 62:1059–1063

    Article  PubMed  Google Scholar 

  • Heiland M, Schmelzle R, Hebecker A, Schulze D (2004b) Intraoperative 3D imaging of the facial skeleton using the SIREMOBIL Iso-C3D. Dentomaxillofac Radiol 33:130–132

    Article  CAS  PubMed  Google Scholar 

  • Heiland M, Schulze D, Blake F, Schmelzle R (2005) Intraoperative imaging of zygomaticomaxillary complex fractures using a 3D C-arm system. Int J Oral Maxillofac Surg 34:369–375

    Article  CAS  PubMed  Google Scholar 

  • Heiland M, Pohlenz P, Blessmann M, Werle H, Fraederich M, Schmelzle R, Blake FA (2008) Navigated implantation after microsurgical bone transfer using intraoperatively acquired cone-beam computed tomography data sets. Int J Oral Maxillofac Surg 37:70–75

    Article  CAS  PubMed  Google Scholar 

  • Heurich T, Stein W, Brief J, Mühling J, Hassfeld S (2002) Computergestützte dentale Implantatplanung auf der Basis volumentomographischer Bildgebung und deren operative Umsetzung mittels computerunterstützt erstellter Bohrschablonen. Biomed Tech (Berl) 47(Suppl. 1):25–28

    Article  Google Scholar 

  • Hoffmann J, Dammann F, Reinert S (2002) Initial experience with intraoperative computed tomography in maxillofacial surgery. Biomed Tech (Berl) 47(Suppl. 1):470–473

    Article  Google Scholar 

  • Hoffmann J, Westendorff C, Troitzsch D, Ernemann U, Reinert S (2004) Bilddatengestützte Navigation zur Steuerung der interstitiellen Lasertherapie von vaskulären Malformationen im Kopf- und Halsbereich. Biomed Tech (Berl) 49:199–201

    Article  CAS  Google Scholar 

  • Hoffmann J, Westendorff C, Schneider M, Reinert S (2005) Accuracy assessment of image guided implant surgery: an experimental study. Int J Oral Maxillofac Implants 20:382–386

    PubMed  Google Scholar 

  • Hohlweg-Majert B, Schön R, Schmelzeisen R, Gellrich NC, Schramm A (2005) Navigational maxillofacial surgery using virtual models. World J Surg 29:1530–1538

    Article  CAS  PubMed  Google Scholar 

  • Holberg C, Steinhäuser S, Geis P, Rudzki-Janson I (2005) Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 66:434–444

    Article  PubMed  Google Scholar 

  • Holst S, Blatz MB, Eitner S (2007) Precision for computer-guided implant placement: using 3D planning software and fixed intraoral reference points. J Oral Maxillofac Surg 65:393–399

    Article  PubMed  Google Scholar 

  • Hölzle F, Klein M, Schwerdtner O, Lüth T, Albrecht J, Hosten N, Felix R, Bier J (2001) Intraoperative computed tomography with the mobile CT Tomoscan M during surgical treatment of orbital fractures. Int J Oral Maxillofac Surg 30:26–31

    Article  Google Scholar 

  • Horsley VA, Clarke RH (1908) The structure and functions of the cerebellum examined by a new method. Brain 31:45–124

    Article  Google Scholar 

  • Hümmeke S, Voßhans J, Esser E (2004) Navigierte Implantatchirurgie im klinischen Einsatz. Z Zahnärztl Impl 20:80–85

    Google Scholar 

  • Kall BA, Goerss SJ, Stiving SO, Davis DH, Kelly PJ (1996) Quantitative analysis of a noninvasive stereotactic image registration technique. Stereotact Funct Neurosurg 66:69–74

    Article  CAS  PubMed  Google Scholar 

  • Kelly P, Kall B, Goerss S (1988) Results of computed tomography-based computerassisted stereotactic resection of metastatic intracranial tumors. Neurosurgery 22:7–17

    Article  CAS  PubMed  Google Scholar 

  • Kopp KC, Koslow AH, Abdo OS (2003) Predictable implant placement with a diagnostic/surgical template and advanced radiographic imaging. J Prosthet Dent 89:611–615

    Article  PubMed  Google Scholar 

  • Kozak J, Nesper M, Fischer M, Lutze T, Goggelmann A, Hassfeld S, Wetter T (2002) Semiautomated registration using new markers for assessing the accuracy of a navigation system. Comput Aided Surg 7:11–24

    Article  CAS  PubMed  Google Scholar 

  • Lascala CA, Panella J, Marques MM (2004) Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol 33:291–294

    Article  CAS  PubMed  Google Scholar 

  • Leber KA, Eder HG, Pendl G (1995) Localization of superficial cerebral lesions using a magnetic resonance imagingguided localizer. Minim Invasive Neurosurg 38:87–89

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Gantes B, Riggs M, Crigger M (2007) Bone density assessments of dental implant sites: 3. Bone quality evaluation during osteotomy and implant placement. Int J Oral Maxillofac Implants 22:208–212

    PubMed  Google Scholar 

  • Lell M, Baum U, Koester M, Nömayr A, Greess H, Lenz M, Bautz W (1999) Morphologische und funktionelle Diagnostik der Kopf-Hals-Region mit Mehrzeilen-Spiral-CT. Radiologe 39:932–938

    Article  CAS  PubMed  Google Scholar 

  • Lindh C, Petersson A, Klinge B (1995) Measurements of distances related to the mandibular canal in radiographs. Clin Oral Implants Res 6:96–103

    Article  CAS  PubMed  Google Scholar 

  • Lofthag-Hansen S, Huumonen S, Gröndahl K, Gröndahl HG (2007) Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:114–119

    Article  PubMed  Google Scholar 

  • Loubele M, Maes F, Schutyser F, Marchal G, Jacobs R, Suetens P (2006) Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:225–234

    Article  PubMed  Google Scholar 

  • Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB (2006) Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 35:219–226

    Article  CAS  PubMed  Google Scholar 

  • Lunsford LD, Martinez AJ, Latchaw RE (1986) Stereotaxic surgery with a magnetic resonance- and computerized tomography-compatible system. J Neurosurg 64:872–878

    Article  CAS  PubMed  Google Scholar 

  • Marmulla R, Mühling J (2006) The influence of computed tomography motion artifacts on computer-assisted surgery. J Oral Maxillofac Surg 64:466–470

    Article  PubMed  Google Scholar 

  • Marmulla R, Hassfeld S, Lüth T, Mühling J (2003) Laser-scan-based navigation in cranio-maxillofacial surgery. J Craniomaxillofac Surg 31:267–277

    Article  PubMed  Google Scholar 

  • Marmulla R, Wörtche R, Mühling J, Hassfeld S (2005) Geometric accuracy of the NewTom 9000 cone beam CT. Dentomaxillofac Radiol 34:28–31

    Article  CAS  PubMed  Google Scholar 

  • Maurer CR, Fitzpatrick JA (1993) Review of medical image registration. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. American Association of Neurological Surgeons, Park Ridge, pp 17–44

    Google Scholar 

  • Maurer CR Jr, Fitzpatrick JM, Wang MY, Galloway RL Jr, Maciunas RJ, Allen GS (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16:447–462

    Article  PubMed  Google Scholar 

  • Meyer U, Wiesmann HP, Runte C, Fillies T, Meier N, Lueth T, Joos U (2003) Evaluation of accuracy of insertion of dental implants and prosthetic treatment by computer-aided navigation in minipigs. Br J Oral Maxillofac Surg 41:102–108

    Google Scholar 

  • Mischkowski RA, Zinser MJ, Neugebauer J, Kübler AC, Zöller JE (2006a) Comparison of static and dynamic computer-assisted guidance methods in implantology. Int J Comput Dent 9:23–35

    CAS  PubMed  Google Scholar 

  • Mischkowski RA, Zinser MJ, Kübler AC, Krug B, Seifert U, Zöller JE (2006b) Application of an augmented reality tool for maxillary positioning in orthognathic surgery—a feasibility study. J Craniomaxillofac Surg 34:478–483

    Article  PubMed  Google Scholar 

  • Mischkowski RA, Pulsfort R, Ritter L, Neugebauer J, Brochhagen HG, Keeve E, Zöller JE (2007a) Geometric accuracy of a newly developed cone-beam device for maxillofacial imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:551–559

    Article  PubMed  Google Scholar 

  • Mischkowski RA, Zinser MJ, Ritter L, Neugebauer J, Keeve E, Zöller JE (2007b) Intraoperative navigation in the maxillofacial area based on 3D imaging obtained by a cone-beam device. Int J Oral Maxillofac Surg 36:687–694

    Article  CAS  PubMed  Google Scholar 

  • Pell MF, Thomas DGT, Cosman E (1994) Development and technical features of the Cosman-Roberts-wells (CRW) stereotactic system. In: Pell MF, Thomas DGT (eds) Handbook of Stereotaxy using the CRW apparatus. Williams & Wilkins, Baltimore, pp 1–52

    Google Scholar 

  • Pettersson A, Komiyama A, Hultin M, Näsström K, Klinge B (2012) Accuracy of virtually planned and template guided implant surgery on edentate patients. Clin Implant Dent Relat Res 14:527–537

    Article  PubMed  Google Scholar 

  • Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP (2006) Accuracy of three-dimensional measurements using cone-beam CT. Dentomaxillofac Radiol 35:410–416

    Article  CAS  PubMed  Google Scholar 

  • Pohlenz P, Blessmann M, Blake F, Heinrich S, Schmelzle R, Heiland M (2007) Clinical indications and perspectives for intraoperative cone-beam computed tomography in oral and maxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:412–417

    Article  PubMed  Google Scholar 

  • Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V (2002) Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 50:797–801

    Article  PubMed  Google Scholar 

  • Rabie A, Ibrahim AM, Lee BT, Lin SJ (2011) Use of intraoperative computed tomography in complex facial fracture reduction and fixation. J Craniofac Surg 22:1466–1467

    Article  PubMed  Google Scholar 

  • Reddy MS, Mayfield-Donahoo T, Vanderven FJ, Jeffcoat MK (1994) A comparison of the diagnostic advantages of panoramic radiography and computed tomography scanning for placement of root form dental implants. Clin Oral Implants Res 5:229–238

    Article  CAS  PubMed  Google Scholar 

  • Rouas P, Nancy J, Bar D (2007) Identification of double mandibular canals: literature review and three case reports with CT scans and cone beam CT. Dentomaxillofac Radiol 36:34–38

    Article  CAS  PubMed  Google Scholar 

  • Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 18:571–577

    PubMed  Google Scholar 

  • Sato S, Arai Y, Shinoda K, Ito K (2004) Clinical application of a new cone-beam computerized tomography system to assess multiple two-dimensional images for the preoperative treatment planning of maxillary implants: case reports. Quintessence Int 35:525–528

    PubMed  Google Scholar 

  • Scarfe WC, Farman AG, Sukovic P (2006) Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 72:75–80

    PubMed  Google Scholar 

  • Schlaier J, Warnat J, Brawanski A (2002) Registration accuracy and practicability of laser-directed surface matching. Comput Aided Surg 7:284–290

    Article  CAS  PubMed  Google Scholar 

  • Schropp L, Wenzel A, Kostopoulos L (2001) Impact of conventional tomography on prediction of the appropriate implant size. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92:458–463

    Article  CAS  PubMed  Google Scholar 

  • Siessegger M, Schneider BT, Mischkowski RA, Lazar F, Krug B, Klesper B, Zöller JE (2001) Use of an image-guided navigation system in dental implant surgery in anatomically complex operation sites. J Craniomaxillofac Surg 29:276–281

    Google Scholar 

  • Spiegel E, Wycis H (1962) Stereoencephalotomy. Grune & Stratton, New York

    Google Scholar 

  • Strasters KC, Little JA, Buurman J, Hill DLG, Hawkes DJ (1997) Anatomical landmark image registration: validation and comparison. Lect Notes Comput Sci 1205:161–170

    Article  Google Scholar 

  • Stumpel LJ (2012) Deformation of stereolithographically produced surgical guides: an obser-vational case series report. Clin Implant Dent Relat Res 14:442–453

    Article  PubMed  Google Scholar 

  • Sukovic P (2003) Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res 6(Suppl. 1):31–36

    Article  PubMed  Google Scholar 

  • Tardieu PB, Vrielinck L, Escolano E (2003) Computer-assisted implant placement. A case report: treatment of the mandible. Int J Oral Maxillofac Implants 18:599–604

    PubMed  Google Scholar 

  • Tardieu PB, Vrielinck L, Escolano E, Henne M, Tardieu AL (2007) Computer-assisted implant placement: scan template, simplant, surgiguide, and SAFE system. Int J Periodontics Restorative Dent 27:141–149

    PubMed  Google Scholar 

  • Van Assche N, van Steenberghe D, Guerrero ME, Hirsch E, Schutyser F, Quirynen M, Jacobs R (2007) Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study. J Clin Periodontol 34:816–821

    Article  PubMed  Google Scholar 

  • Wagner A, Schicho K, Kainberger F, Birkfellner W, Grampp S, Ewers R (2003) Quantification and clinical relevance of head motion during computed tomography. Investig Radiol 38:733–741

    Article  Google Scholar 

  • Wanschitz F, Birkfellner W, Watzinger F, Schopper C, Patruta S, Kainberger F, Figl M, Kettenbach J, Bergmann H, Ewers R (2002) Evaluation of accuracy of computer-aided intraoperative positioning of endosseous oral implants in the edentulous mandible. Clin Oral Implants Res 13:59–64

    Article  PubMed  Google Scholar 

  • Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K (1987) Threedimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol 27:543–547

    Article  CAS  PubMed  Google Scholar 

  • Westendorff C, Gülicher D, Dammann F, Reinert S, Hoffmann J (2006) Computer-assisted surgical treatment of orbitozygomatic fractures. J Craniofac Surg 17:837–842

    Article  PubMed  Google Scholar 

  • Widmann G, Widmann R, Widmann E, Jaschke W, Bale RJ (2005) In vitro accuracy of a novel registration and targeting technique for image-guided template production. Clin Oral Implants Res 16:502–508.

    Google Scholar 

  • Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical tracking systems. In: Galloway RL Jr (ed) Medical imaging 2004: visualization, image-guided procedures, and display. Proceedings of the SPIE volume 5367, pp. 421–432

    Google Scholar 

  • Wirtz CR, Bonsanto MM, Knauth M, Tronnier VM, Albert FK, Staubert A, Kunze S (1997) Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 2:172–179

    Article  CAS  PubMed  Google Scholar 

  • Woodworth BA, Chiu AG, Cohen NA, Kennedy DW (2008) Real-time computed tomography image update for endoscopic skull base surgery. J Laryngol Otol 122:361–365

    Article  CAS  PubMed  Google Scholar 

  • Zizelmann C, Gellrich NC, Metzger MC, Schoen R, Schmelzeisen R, Schramm A (2007) Computer-assisted reconstruction of orbital floor based on cone beam tomography. Br J Oral Maxillofac Surg 45:79–80

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Eggers M.D., D.M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eggers, G. (2018). Image-Guided Surgical Navigation. In: Scarfe, W., Angelopoulos, C. (eds) Maxillofacial Cone Beam Computed Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-62061-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62061-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62059-6

  • Online ISBN: 978-3-319-62061-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics