Advertisement

Defending Against Evolving DDoS Attacks: A Case Study Using Link Flooding Incidents

  • Min Suk Kang
  • Virgil D. GligorEmail author
  • Vyas Sekar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10368)

Abstract

Distributed denial-of-service (DDoS) attacks are constantly evolving. Over the last few years, we have observed increasing evidence of attack evolution in multiple dimensions (e.g., attack goals, capabilities, and strategies) and wide-ranging timescales; e.g., from seconds to months. In this paper, we discuss the recent evolution of DDoS attacks and challenges of countering them. In particular, we focus on the evolution one of the most insidious DDoS attacks, namely link-flooding attacks, as a case study. To address the challenges posed by these attacks, we propose a two-tier defense that can be effectively implemented using emerging network technologies. The first tier is based on a deterrence mechanism whereas the second requires inter-ISP collaboration.

References

  1. 1.
  2. 2.
  3. 3.
    Akamai: The state of the internet 2nd quarter. Report (2012)Google Scholar
  4. 4.
    Alwabel, A., Yu, M., Zhang, Y., Mirkovic, J.: SENSS: observe and control your own traffic in the Internet. In: Proceeding of ACM SIGCOMM (2014)Google Scholar
  5. 5.
    Arbor Networks: Worldwide infrastructure security report, volume IX. Arbor Special Report (2014)Google Scholar
  6. 6.
    Barker, I.: 2016 will see the rise of DDoS-as-a-service. In: BetaNews (Dec 28 2015). http://betanews.com/2015/12/28/2016-will-see-the-rise-of-ddos-as-a-service/
  7. 7.
    Basescu, C., Reischuk, R.M., Szalachowski, P., Perrig, A., Zhang, Y., Hsiao, H.C., Kubota, A., Urakawa, J.: SIBRA: Scalable internet bandwidth reservation architecture. In: Proceeding of NDSS (2016)Google Scholar
  8. 8.
    Beverly, R., Koga, R., Claffy, K.: Initial longitudinal analysis of IP source spoofing capability on the Internet (2013)Google Scholar
  9. 9.
    Bright, P.: Can a DDoS break the Internet? Sure.. just not all of it. In: Ars Technica (2 April 2013). http://arstechnica.com/security/2013/04/can-a-ddos-break-the-internet-sure-just-not-all-of-it/
  10. 10.
    Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: The commoditization of malware distribution. In: Proceeding of USENIX Security (2011)Google Scholar
  11. 11.
    Cerf, V.: The freedom to be who you want to be: strong authentication and pseudonymity on the internet. In: RSA Conference (2013)Google Scholar
  12. 12.
    FCC: April 2014 Multistate 911 Outage: Cause and Impact. Public Safety Docket No. 14–72, PSHSB Case File Nos. 14-CCR-0001-0007 (2014)Google Scholar
  13. 13.
    Ferguson, P.: Network ingress filtering: Defeating denial of service attacks which employ IP source address spoofing. IETF RFC2827 (2000)Google Scholar
  14. 14.
    Gligor, V.D.: A note on the denial-of-service problem. In: Proceeding of IEEE Security and Privacy (1983)Google Scholar
  15. 15.
    Gligor, V.: Dancing with the adversary: a tale of wimps and giants. In: Christianson, B., Malcolm, J., Matyáš, V., Švenda, P., Stajano, F., Anderson, J. (eds.) Security Protocols 2014. LNCS, vol. 8809, pp. 100–115. Springer, Cham (2014). doi: 10.1007/978-3-319-12400-1_11 Google Scholar
  16. 16.
    Goodin, D.: How extorted e-mail provider got back online after crippling DDoS attack. In: Ars Technica, (10 November 2015). http://arstechnica.com/security/2015/11/ how-extorted-e-mail-provider-got-back-online-after-crippling-ddos-attack/
  17. 17.
    Greene, T.: Bot-herders can launch DDoS attacks from dryers, refrigerators, other Internet of things devices. In: NetworkWorld (24 September 2014)Google Scholar
  18. 18.
    Hui, K.-L., Kim, S.-H., Wang, Q.-H.: Marginal deterrence in the enforcement of law: evidence from distributed denial of service attack. In: Workshop on Analytics for Business, Consumer and Social Insights (BCSI). Singapore, August 2013Google Scholar
  19. 19.
    Kang, M.S., Gligor, V.D.: Routing bottlenecks in the internet: causes, exploits, and countermeasures. In: Proceeding of ACM CCS (2014)Google Scholar
  20. 20.
    Kang, M.S., Gligor, V.D., Sekar, V.: SPIFFY: Inducing Cost-Detectability Tradeoffs for Persistent Link-Flooding Attacks. In: Proceedings of NDSS (2016)Google Scholar
  21. 21.
    Kang, M.S., Lee, S.B., Gligor, V.D.: The Crossfire Attack. In: Proceeding of IEEE S and P (2013)Google Scholar
  22. 22.
    Karami, M., McCoy, D.: Understanding the emerging threat of DDoS-as-a-service. In: Proceeding of USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET) (2013)Google Scholar
  23. 23.
    Khandelwal, S.: 602 Gbps! This may have been the largest DDoS attack in history. In: NetworkWorld (8 January 2016)Google Scholar
  24. 24.
    Lee, S.B., Kang, M.S., Gligor, V.D.: CoDef: collaborative defense against large-scale link-flooding attacks. In: Proceedinf of ACM CoNEXT (2013)Google Scholar
  25. 25.
    Mo, Y., Kim, T.H.J., Brancik, K., Dickinson, D., Lee, H., Perrig, A., Sinopoli, B.: Cyber-physical security of a smart grid infrastructure. Proc. IEEE 100(1), 195–209 (2012)CrossRefGoogle Scholar
  26. 26.
    Mortensen, A.: DDoS Open Threat Signaling Requirements. IETF draft-mortensen-threat-signaling-requirements-00 (2015)Google Scholar
  27. 27.
    NENA: NENA i3 Technical Requirements Document. NENA VoIP/Packet Technical Committee Long Term Definition Working Group (2006)Google Scholar
  28. 28.
    Nussman, C.: DHS Bulletin on Telephony Denial of Service (TDOS) attacks on PSAPs. In: National Emergency Number Association (NENA), (17 March 2013). https://www.nena.org/news/119592/DHS-Bulletin-on-Denial-of-Service-TDoS-Attacks-on-PSAPs.htm
  29. 29.
    Patterson, D.: Exclusive: inside the ProtonMail siege: how two small companies fought off one of Europe’s largest DDoS attacks. In: TechRepublic, (13 November 2015). http://www.techrepublic.com/article/exclusive-inside-the-protonmail-siege-how-two-small-companies-fought-off-one-of-europes-largest-ddos/
  30. 30.
    Png, I.P., Wang, C.Y., Wang, Q.H.: The deterrent and displacement effects of information security enforcement: International evidence. J. Manag. Inf. Syst. 25, 125–144 (2008)CrossRefGoogle Scholar
  31. 31.
    Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In: Proceeding of NDSS (2014)Google Scholar
  32. 32.
    Storm, D.: Biggest DDoS attack in history slows Internet, breaks record at 300 Gbps. In: ComputerWorld (27 March 2013)Google Scholar
  33. 33.
    Studer, A., Perrig, A.: The coremelt attack. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 37–52. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04444-1_3 CrossRefGoogle Scholar
  34. 34.
    Xu, Q., Huang, J., Wang, Z., Qian, F., Gerber, A., Mao, Z.M.: Cellular data network infrastructure characterization and implication on mobile content placement. In: Proceeding of ACM SIGMETRICS (2011)Google Scholar
  35. 35.
    Xu, Z., Wang, H., Xu, Z., Wang, X.: Power attack: An increasing threat to data centers. In: Proceeding of NDSS (2014)Google Scholar
  36. 36.
    Yu, C.F., Gligor, V.D.: A formal specification and verification method for the prevention of denial of service. In: Proceeding of IEEE Security and Privacy (1988)Google Scholar
  37. 37.
    Yu, M., Jose, L., Miao, R.: Software defined traffic measurement with opensketch. In: Proceeding of USENIX NSDI (2013)Google Scholar
  38. 38.
    Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (unfixable) flaws on a billion devices: Rethinking network security for the Internet-of-Things. In: Proceeding of HotNets (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations