Skip to main content

Radiation Properties of Edge-Coupled Split-Ring Resonators (EC-SRRs) and Derived Structures

  • Chapter
  • First Online:
  • 1017 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, a study of the radiation properties of the SRR and other metamaterial-inspired resonators will be detailed. Due to its uniplanar geometry, which contributed to its widespread diffusion in the metamaterial community, the edge-coupled SRR (EC-SRR) is the topology considered throughout this work. Analytical approach was at the base of the presented results, and provided approximated expressions for the most relevant antenna parameters, such as the input resistance, the radiation efficiency and the cross-polarization of the radiated fields. The results have been validated by comparison with full-wave EM simulations in different cases, obtaining good agreement. The expressions obtained in this chapter are at the base of the antenna designs presented in the next chapter, where experimental data provided additional validation of the analysis exposed below.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harrington RF (1964) Theory of loaded scatterers. In: Proceedings of the institution of electrical engineers, pp 617–623

    Google Scholar 

  2. Marqués R, Medina F, Rafii-El-Idrissi R (2002) Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B 65:144440

    Article  Google Scholar 

  3. Marques R, Martin F, Sorolla M (2008) Metamaterials with negative parameters. Wiley-Interscience, Hoboken, N.J.

    Google Scholar 

  4. Murgatroyd PN (1989) Calculation of Proximity losses in multistranded conductor bunches. IEE Proc Sci Meas Technol 136:115–120

    Google Scholar 

  5. Orfanidis SJ (2002) Electromagnetic waves and antennas. Rutgers University, New Brunswick, NJ

    Google Scholar 

  6. Jackson JD (1962) Classical electrodynamics, vol 3. Wiley, New York

    MATH  Google Scholar 

  7. Pozar DM (2009) Microwave engineering. Wiley, New York

    Google Scholar 

  8. Marques R, Mesa F, Martel J, Medina F (2003) Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments. IEEE Trans Antennas Propag 51:2572–2581

    Article  Google Scholar 

  9. Balanis CA (2005) Antenna theory: analysis and design, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  10. Pozar DM (2009) New results for minimum Q, Maximum gain, and polarization properties of electrically small arbitrary antennas. In: European conference on antennas and propagation, pp 1914–1917

    Google Scholar 

  11. Zamora G, Paredes F, Herraiz-Martinez FJ, Martin F, Bonache J (2013) Bandwidth limitations of ultra high frequency-radio frequency identification tags. IET Microw Antennas Propag 7:788–794

    Article  Google Scholar 

  12. Garcia-Garcia J, Martin F, Baena JD, Marques R, Jelinek L (2005) On the resonances and polarizabilities of split ring resonators. J Appl Phys 98 (Aug 1 2005)

    Google Scholar 

  13. Hong J-S, Lancaster MJ (2001) Microstrip filters for RF/microwave applications. Wiley, New York

    Book  Google Scholar 

  14. Gustafsson M, Sohl C, Kristensson G (2009) Illustrations of new physical bounds on linearly polarized antennas. IEEE Trans Antennas Propag 57:1319–1327

    Article  Google Scholar 

  15. Mohammadpour-Aghdam K, Faraji-Dana R, Vandenbosch GA, Radiom S, Gielen GG (2011) Physical bound on Q factor for planar antennas. In: European microwave conference (EuMC), pp 250–252

    Google Scholar 

  16. Marqués R, Baena J, Martel J, Medina F, Falcone F, Sorolla M, Martín F (2003) Novel small resonant electromagnetic particles for metamaterial and filter design. Proc ICEAA 3:439–442

    Google Scholar 

  17. Falcone F, Lopetegi T, Laso M, Baena J, Bonache J, Beruete M, Marqués R, Martin F, Sorolla M (2004) Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett 93:197401

    Article  Google Scholar 

  18. Booker HG (1946) Slot aerials and their relation to complementary wire aerials (Babinet’s principle). J Inst Electr Eng Part IIIA Radiolocation 93:620–626

    Article  Google Scholar 

  19. Deschamps GA (1959) Impedance properties of complementary multiterminal planar structures. IRE Trans Antennas Propag 7:371–378

    Article  Google Scholar 

  20. Lang K (1973) Babinet’s principle for a perfectly conducting screen with aperture covered by resistive sheet. IEEE Trans Antennas Propag 21:738–740

    Article  Google Scholar 

  21. Senior T (1977) Some extensions of Babinet’s principle in electromagnetic theory. IEEE Trans Antennas Propag 25:417–420

    Article  Google Scholar 

  22. Hansen R (1998) Slot antenna in a resistive screen. IEEE Trans Antennas Propag 46:1028–1031

    Article  Google Scholar 

  23. Yoshitomi K (2001) Radiation from a slot in an impedance surface. IEEE Trans Antennas Propag 49:1370–1376

    Article  Google Scholar 

  24. Vallecchi A, Gentili GB (2007) Microstrip-fed slot antennas backed by a very thin cavity. Microwave Opt Technol Lett 49:247–250

    Article  Google Scholar 

  25. Nikitin PV, Lam S, Rao K (2005) Low cost silver ink RFID tag antennas. In IEEE Antennas Propag Soc Int Symp, pp 353–356, 2005

    Google Scholar 

  26. Pongpaibool P (2012) A study of cost-effective conductive ink for inkjet-printed RFID application. In: International symposium on antennas and propagation (ISAP), Nagoys, pp 1248–1251

    Google Scholar 

  27. Zuffanelli S, Zamora G, Aguilà P, Paredes F, Martin F, Bonache J (2015) On the radiation properties of split-ring resonators (SRRs) at the second resonance. IEEE Trans Microw Theory Tech 63(7):2133–2141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Zuffanelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zuffanelli, S. (2018). Radiation Properties of Edge-Coupled Split-Ring Resonators (EC-SRRs) and Derived Structures. In: Antenna Design Solutions for RFID Tags Based on Metamaterial-Inspired Resonators and Other Resonant Structures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-62030-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62030-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62029-9

  • Online ISBN: 978-3-319-62030-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics