Skip to main content

Modelling Giant Lipid Vesicles Designed for Light Energy Transduction

  • Chapter
  • First Online:
Advances in Bionanomaterials

Abstract

In this paper a deterministic kinetic model describing giant lipid vesicles designed for the transduction of light into chemical energy will be presented and discussed. Although the model is based on a simplified mechanism, kinetic constants taken from experimental measurements have been used. The obtained results have shown that giant vesicles encapsulating the Reaction Center in the lipid membrane can exhibit, in suitable experimental conditions, a sensible increase of the internal pH in half an hour under a constant light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noireaux, V., Libchaber, A.: Proc. Natl. Acad. Sci. U.S.A. 101, 17669–17674 (2004)

    Article  Google Scholar 

  2. Luisi, P.L., Ferri, F., Stano, P.: Naturwissenschaften 93, 1–13 (2006)

    Article  Google Scholar 

  3. Morowitz, H.J., Heinz, B., Deamer, D.W.: Orig. Life Evol. Biosph. 18, 281–287 (1998)

    Article  Google Scholar 

  4. Szostak, J. W., Bartel, D. P., Luisi, P. L., Nature, 409, 387–39 (2001)

    Google Scholar 

  5. de Lorenzo, V., Danchin, A.: EMBO Rep. 9, 822–827 (2008)

    Article  Google Scholar 

  6. Pohorille, A., Deamer, D.: Trends Biotechnol. 20, 123–128 (2002)

    Article  Google Scholar 

  7. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F., Walde, P.: Nat. Nanotech. 11, 409–420 (2016)

    Article  Google Scholar 

  8. Allen, J.P., Feher, G., Yeates, T.O., Komiya, H., Rees, D.C.: Proc. Natl. Acad. Sci. U.S.A. 85, 8487–8491 (1988)

    Article  Google Scholar 

  9. Allen, J.P., Williams, J.C.: FEBS Lett. 438, 5–9 (1988)

    Article  Google Scholar 

  10. Nagy, L., Milano, F., Dorogi, M., Trotta, M., Laczkó, G., Szebényi, K., Váró, G., Agostiano, A., Maróti, P.: Biochemistry 43, 12913–12923 (2004)

    Article  Google Scholar 

  11. Milano, F., Italiano, F., Agostiano, A., Trotta, M.: Photosynth. Res. 100, 107–112 (2009)

    Article  Google Scholar 

  12. Mavelli, F., Trotta, M., Ciriaco, F., Agostiano, A., Giotta, L., Italiano, F., Milano, F.: Eur Biophys J Biophys Lett 43, 301–315 (2014)

    Article  Google Scholar 

  13. Ollivon, M., Lesieur, S., Grabielle-Madelmont, C., Paternostre, M.: Biochim. Biophys. Acta 1508, 34–50 (2000)

    Article  Google Scholar 

  14. Stano, P., Carrara, P., Kuruma, Y., Souza, T.P., Luisi, P.L.: J. Mater. Chem. 21, 18887–18902 (2011)

    Article  Google Scholar 

  15. Pautot, S., Frisken, B.J., Weitz, D.A.: Proc. Natl. Acad. Sci. U.S.A. 100, 10718–10721 (2003)

    Article  Google Scholar 

  16. Grotzky, A., Altamura, E., Adamcik, J., Carrara, P., Stano, P., Mavelli, F., Nauser, T., Mezzenga, R., Schluter, A.D., Walde, P.: Langmuir 29, 10831–10840 (2013)

    Article  Google Scholar 

  17. Stano, P., Carrara, P., Kuruma, Y., Souza, T.P., Luisi, P.L.: J. Mater. Chem. 21, 18887–18902 (2011)

    Article  Google Scholar 

  18. Altamura, E., Stano, P., Walde, P., Mavelli, F.: Int. J. Unconv. Comp. 11, 5–21 (2015)

    Google Scholar 

  19. Mavelli, F.: BMC Bioinf 13(4), S10 (2012)

    Article  Google Scholar 

  20. Mavelli, F., Ruiz-Mirazo, K.: Integr Biol 5, 324–341 (2013)

    Article  Google Scholar 

  21. Mavelli, F., Altamura, E., Cassidei, L., Stano, P.: Entropy 16, 2488–2511 (2014)

    Article  Google Scholar 

  22. Mavelli, F., Stano, P.: Artif Life 21, 1–19 (2015)

    Article  Google Scholar 

  23. Geyer, T., Lauck, F., Helms, V.: J. Biotech. 129, 212–228 (2007)

    Article  Google Scholar 

  24. Geyer, T., Lauck, F., Mol, X., Blaß, S., Helms, V.: PLoS ONE 5, e14070 (2010)

    Article  Google Scholar 

  25. Mavelli, F., Piotto, S.: J. Mol. Struct. 771, 55–64 (2006)

    Article  Google Scholar 

  26. Vekshin, N.: Photonics of biopolymers. Springer-Verlag, Berlin Heidelberg (2002)

    Book  Google Scholar 

  27. Sener, M.K., Olsen, J.D., Hunter, C.N., Schulten, K.: Proc. Natl. Acad. Sci. U.S.A. 104, 15723–15728 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Mavelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Altamura, E., Milano, F., Trotta, M., Stano, P., Mavelli, F. (2018). Modelling Giant Lipid Vesicles Designed for Light Energy Transduction. In: Piotto, S., Rossi, F., Concilio, S., Reverchon, E., Cattaneo, G. (eds) Advances in Bionanomaterials. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-62027-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62027-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62026-8

  • Online ISBN: 978-3-319-62027-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics