Advertisement

Production of Nanostructured Microspheres Biopolymer-Active Principle-Magnetic Nanoparticles by Supercritical Assisted Atomization

  • Renata AdamiEmail author
  • Mariarosa Scognamiglio
  • Ernesto Reverchon
Chapter
  • 469 Downloads
Part of the Lecture Notes in Bioengineering book series (LNBE)

Abstract

Supercritical Assisted Atomization (SAA) has been applied to the production of nanostructured microspheres ampicillin-chitosan-magnetic nanoparticles (AMP-CH-NMPs). Several ampicillin/chitosan (AMP/CH) ratios with a fixed content of NMPs were processed in acid water solutions, to produce microspheres with different size, drug content and amount of NMPs. To verify the successful formation of microparticles, drug content and nanoparticle dispersion, they were characterized by SEM (Scanning Electron Microscope), EDX (Energy Dispersive X-ray), TGA (ThermoGravimetric Analysis), HPLC (High Performance Liquid Chromatography), UV-vis obtaining information on morphology, particle size distribution, nanostructure, loading of active principle in the polymeric matrix and drug release rate. Spherical microparticles were obtained, with a maximum particle size of 2 µm and loading efficiencies up to 99%. The microspheres produced by SAA showed a controlled release of the drug over about 72 h.

Keywords

Supercritical assisted atomization Magnetic nanoparticles Nanostructured microparticles Controlled release Targeted delivery Ampicillin trihydrate 

Notes

Acknowledgements

The authors gratefully acknowledge Dr. Valentina Gregori and Dr. Alessia Di Capua for the help in performing the experiments. The MiUR (Ministero dell’istruzione, dell’Università e della Ricerca) is acknowledged for the financial support.

References

  1. 1.
    Felinto, M.C.F.C., Camilo, R.L., Diegues, T.G.: Magnetic nanoparticles and their application in biomedicine. In: International Nuclear Atlantic Conference—INAC 2007, Satnos, SP, Brazil (2007)Google Scholar
  2. 2.
    Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., von Rechenberg, B.: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)CrossRefGoogle Scholar
  3. 3.
    Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., Hubalek, J.: Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144–149 (2010)CrossRefGoogle Scholar
  4. 4.
    Pinto-Alphandary, H., Andremont, A., Couvreur, P.: Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob. Ag. 13, 155–168 (2000)CrossRefGoogle Scholar
  5. 5.
    Faraji, A.H., Wipf, P.: Nanoparticles in cellular drug delivery. Bioorgan. Med. Chem. 17, 2950–2962 (2009)CrossRefGoogle Scholar
  6. 6.
    Chandy, T., Sharma, C.P.: Chitosan matrix for oral sustained delivery of ampicillin. Biomaterials 14, 939–944 (1993)CrossRefGoogle Scholar
  7. 7.
    Saha, P., Goyal, A.K., Rath, G.: Formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Tropical J. Pharm. Res. 9, 483–488 (2010)CrossRefGoogle Scholar
  8. 8.
    Changerath, R., Nalr, P.D., Mathew, S., Fteghunadhan, C.P.: Nalr: Poly(methyl methacrylate)-grafted chitosan microspheres for controlled release of ampicillin. J. Biomed. Mater. Res.—Part B Appl. Biomater. 89, 65–76 (2009)CrossRefGoogle Scholar
  9. 9.
    Ball, A.P., Bartlett, J.G., Craig, W.A., Drusano, G.L., Felmingham, D., Garau, J.A., Klugman, K.P., Low, D.E., Mandell, L.A., Rubinstein, E., Tillotson, G.S.: Future trends in antimicrobial chemotherapy: expert opinion on the 43rd ICAAC. J. Chemother. 16, 419–436 (2004)CrossRefGoogle Scholar
  10. 10.
    Huh, A.J., Kwon, Y.J.: “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control Release 156, 128–145 (2011)CrossRefGoogle Scholar
  11. 11.
    Hussein-Al-Ali, S.H., El Zowalaty, M.E., Hussein, M.Z., Geilich, B.M., Webster, T.J.: Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int. J. Nanomed. 9, 3801–3814 (2014)CrossRefGoogle Scholar
  12. 12.
    Baldino, L., Cardea, S., Reverchon, E.: Production of antimicrobial membranes loaded with potassium sorbate using a supercritical phase separation process. Innov. Food Sci. Emerg. 34, 77–85 (2016)CrossRefGoogle Scholar
  13. 13.
    Reverchon, E., Adami, R.: Nanomaterials and supercritical fluids. J. Supercrit. Fluid 37, 1–22 (2006)CrossRefGoogle Scholar
  14. 14.
    Reverchon, E., Sesti Osseo, L., Gorgoglione, D.: Supercritical CO2 extraction of basil oil: characterization of products and process modeling. J. Supercrit. Fluids 7, 185–190 (1994)CrossRefGoogle Scholar
  15. 15.
    Rossmann, M., Braeuer, A., Schluecker, E.: Supercritical antisolvent micronization of PVP and ibuprofen sodium towards tailored solid dispersions. J. Supercrit. Fluids 89, 16–27 (2014)CrossRefGoogle Scholar
  16. 16.
    De Paz, E., Martín, Á., Every, H., Cocero, M.J.: Production of water-soluble quercetin formulations by antisolvent precipitation and supercritical drying. J. Supercrit. Fluid 104, 281–290 (2015)CrossRefGoogle Scholar
  17. 17.
    Kurniawansyah, F., Mammucari, R., Foster, N.R.: Inhalable curcumin formulations by supercritical technology. Powder Technol. 284, 289–298 (2015)CrossRefGoogle Scholar
  18. 18.
    Santiago, L.M., Masmoudi, Y., Tarancón, A., Djerafi, R., Bagán, H., García, J.F., Badens, E.: Polystyrene based sub-micron scintillating particles produced by supercritical anti-solvent precipitation. J. Supercrit. Fluid 103, 18–27 (2015)CrossRefGoogle Scholar
  19. 19.
    Nerome, H., Machmudah, S., Wahyudiono, R., Fukuzato, T., Higashiura, H., Kanda, M.Goto: Effect of solvent on nanoparticle production of β-Carotene by a supercritical antisolvent process. Chem. Eng. Technol. 39, 1771–1777 (2016)CrossRefGoogle Scholar
  20. 20.
    Shen, Y.B., Du, Z., Wang, Q., Guan, Y.X., Yao, S.J.: Preparation of chitosan microparticles with diverse molecular weights using supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer. Powder Technol. 254, 416–424 (2014)CrossRefGoogle Scholar
  21. 21.
    Wu, H.T., Yang, M.W., Huang, S.C.: Sub-micrometric polymer particles formation by a supercritical assisted-atomization process. J. Taiwan Inst. Chem. E. 45, 1992–2001 (2014)CrossRefGoogle Scholar
  22. 22.
    Prosapio, V., De Marco, I., Reverchon, E.: PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chem. Eng. J. 292, 264–275 (2016)CrossRefGoogle Scholar
  23. 23.
    Della Porta, G., Campardelli, R., Cricchio, V., Oliva, F., Maffulli, N., Reverchon, E.: Injectable PLGA/Hydroxyapatite/Chitosan microcapsules produced by supercritical emulsion extraction technology: an in vitro study on Teriparatide/Gentamicin controlled release. J. Pharm. Sci.-Us. 105, 2164–2172 (2016)CrossRefGoogle Scholar
  24. 24.
    Adami, R., Liparoti, S., Reverchon, E.: A new supercritical assisted atomization configuration, for the micronization of thermolabile compounds. Chem. Eng. J. 173, 55–61 (2011)CrossRefGoogle Scholar
  25. 25.
    Wu, H.T., Huang, S.C., Yang, C.P., Chien, L.J.: Precipitation parameters and the cytotoxicity of chitosan hydrochloride microparticles production by supercritical assisted atomization. J. Supercrit. Fluid 102, 123–132 (2015)CrossRefGoogle Scholar
  26. 26.
    Shen, Y.B., Guan, Y.X., Yao, S.J.: Supercritical fluid assisted production of micrometric powders of the labile trypsin and chitosan/trypsin composite microparticles. Int. J. Pharm. 489, 226–236 (2015)CrossRefGoogle Scholar
  27. 27.
    Labuschagne, P.W., Adami, R., Liparoti, S., Naidoo, S., Swai, H., Reverchon, E.: Preparation of rifampicin/poly(D, L-lactice) nanoparticles for sustained release by supercritical assisted atomization technique. J. Supercrit. Fluid 95, 106–117 (2014)CrossRefGoogle Scholar
  28. 28.
    Liparoti, S., Adami, R., Caputo, G., Reverchon, E.: Supercritical assisted atomization: polyvinylpyrrolidone as carrier for drugs with poor solubility in water. J. Chem.-Ny. (2013)Google Scholar
  29. 29.
    Adami, R., Liparoti, S., Della Porta, G., Del Gaudio, P., Reverchon, E.: Lincomycin hydrochloride loaded albumin microspheres for controlled drug release, produced by supercritical assisted atomization. J. Supercrit. Fluid 119, 203–210 (2017)CrossRefGoogle Scholar
  30. 30.
    Shen, Y.B., Du, Z., Tang, C., Guan, Y.X., Yao, S.J.: Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int. J. Pharm. 505, 223–233 (2016)CrossRefGoogle Scholar
  31. 31.
    Wu, H.T., Yang, C.P., Huang, S.C.: Dissolution enhancement of indomethacin-chitosan hydrochloride composite particles produced using supercritical assisted atomization. J. Taiwan Inst. Chem. E. 67, 98–105 (2016)CrossRefGoogle Scholar
  32. 32.
    Adami, R., Reverchon, E.: Composite polymer-Fe3O4 microparticles for biomedical applications, produced by supercritical assisted atomization. Powder Technol. 218, 102–108 (2012)CrossRefGoogle Scholar
  33. 33.
    Reverchon, E., Adami, R.: Supercritical assisted atomization to produce nanostructured chitosan-hydroxyapatite microparticles for biomedical application. Powder Technol. 246, 441–447 (2013)CrossRefGoogle Scholar
  34. 34.
    Reverchon, E., Antonacci, A.: Drug-polymer microparticles produced by supercritical assisted atomization. Biotechnol. Bioeng. 97, 1626–1637 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations