Advertisement

Current Directions in Synthetic Cell Research

  • Pasquale StanoEmail author
  • Giordano Rampioni
  • Francesca D’Angelo
  • Emiliano Altamura
  • Fabio Mavelli
  • Roberto Marangoni
  • Federico Rossi
  • Luisa Damiano
Chapter
  • 557 Downloads
Part of the Lecture Notes in Bioengineering book series (LNBE)

Abstract

The construction of synthetic cells of minimal complexity is today one of the most attractive and challenging goals in synthetic biology. Synthetic cells are assembled by combining the methods of liposome technology and microfluidics, and components of cell-free systems. In this contribution, we will shortly illustrate the state-of-the-art of synthetic cell research; next we will present some current trends and scenarios, that could lead to a qualitative jump in the next years. In particular, we will focus on the construction of novel multi-compartment vesicles, the achieving of new functions via the reconstitution membrane-bound proteins, the shift from the isolated cell—to the cell population/community perspective, the exploitation of chemical signalling, and the integration of stochastic mathematical models. The ambitious goal of approaching embodied and minimal cognition from this experimental perspective is also shortly mentioned.

keywords

Synthetic cell Synthetic biology Lipid vesicles Origins of life 

Notes

Acknowledgements

The authors thank Pier Luigi Luisi (Roma Tre University and ETH Zurich) for inspiring discussions. This work has been stimulated by our involvement in the European COST Action CM-1304 “Emergence and Evolution of Complex Chemical Systems” and TD-1308 “Origins and evolution of life on Earth and in the Universe (ORIGINS)”.

References

  1. 1.
    Amos, M., Dittrich, P., McCaskill, J., Rasmussen, S.: Biological and chemical information technologies. Procedia Comput. Sci. 7, 56–60 (2011)CrossRefGoogle Scholar
  2. 2.
    Bich, L., Damiano, L.: Life, autonomy and cognition: an organizational approach to the definition of the universal properties of life. Orig. Life Evol. Biosph. 42, 389–397 (2012)CrossRefGoogle Scholar
  3. 3.
    Calviello, L., Stano, P., Mavelli, F., Luisi, P.L., Marangoni, R.: Quasi-cellular systems: stochastic simulation analysis at nanoscale range. BMC Bioinform. 14, S7 (2013)Google Scholar
  4. 4.
    Carrara, P., Stano, P., Luisi, P.L.: Giant vesicles Colonies: a model for primitive cell communities. ChemBioChem 13, 1497–1502 (2012)CrossRefGoogle Scholar
  5. 5.
    Chandrawati, R., Caruso, F.: Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 28, 13798–13807 (2012)CrossRefGoogle Scholar
  6. 6.
    Choi, H.J., Montemagno, C.D.: Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett. 5, 2538–2542 (2005)CrossRefGoogle Scholar
  7. 7.
    Clark, A.: An embodied cognitive science? Trends Cogn. Sci. (Regul. Ed.) 3, 345–351 (1999)Google Scholar
  8. 8.
    Cronin, L., Krasnogor, N., Davis, B.G., Alexander, C., Robertson, N., Steinke, J.H.G., Schroeder, S.L.M., Khlobystov, A.N., Cooper, G., Gardner, P.M., Siepmann, P., Whitaker, B.J., Marsh, D.: The imitation game–a computational chemical approach to recognizing life. Nat. Biotechnol. 24, 1203–1206 (2006)CrossRefGoogle Scholar
  9. 9.
    Damiano, L.: Co-emergences in life and science: a double proposal for biological emergentism. Synthese 185, 273–294 (2010)CrossRefGoogle Scholar
  10. 10.
    Damiano, L., Hiolle, A., Canamero, L.: Grounding Synthetic Knowledge. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., Doursat, R. (eds.) Advances in artificial life, ECAL 2011, pp. 200–207. MIT Press, Cambridge MA (2011)Google Scholar
  11. 11.
    Damiano, L., Kuruma, Y., Stano, P.: What can synthetic biology offer to artificial intelligence (and vice versa)? BioSystems 148, 1–3 (2016)CrossRefGoogle Scholar
  12. 12.
    Elani, Y.: Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology. Biochem. Soc. Trans. 44, 723–730 (2016)CrossRefGoogle Scholar
  13. 13.
    Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)CrossRefGoogle Scholar
  14. 14.
    Gardner, P.M., Winzer, K., Davis, B.G.: Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat Chem 1, 377–383 (2009)CrossRefGoogle Scholar
  15. 15.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hadorn, M., Boenzli, E., Eggenberger Hotz, P., Hanczyc, M.M.: Hierarchical unilamellar vesicles of controlled compositional heterogeneity. PLoS ONE 7, e50156 (2012)CrossRefGoogle Scholar
  17. 17.
    Hadorn, M., Boenzli, E., Srensen, K.T., De Lucrezia, D., Hanczyc, M.M., Yomo, T.: Defined DNA-Mediated assemblies of gene-expressing giant unilamellar vesicles. Langmuir 29, 15309–15319 (2013)CrossRefGoogle Scholar
  18. 18.
    Hadorn, M., Eggenberger Hotz, P.: DNA-mediated self-assembly of artificial vesicles. PLoS ONE 5, e9886 (2010)CrossRefGoogle Scholar
  19. 19.
    Ishikawa, K., Sato, K., Shima, Y., Urabe, I., Yomo, T.: Expression of a cascading genetic network within liposomes. FEBS Lett. 576, 387–390 (2004)CrossRefGoogle Scholar
  20. 20.
    Kaneda, M., Nomura, S.i.M., Ichinose, S., Kondo, S., Nakahama, K.i., Akiyoshi, K., Morita, I.: Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes. Biomaterials 30, 3971–3977 (2009)Google Scholar
  21. 21.
    Kita, H., Matsuura, T., Sunami, T., Hosoda, K., Ichihashi, N., Tsukada, K., Urabe, I., Yomo, T.: Replication of genetic information with self-encoded replicase in liposomes. ChemBioChem 9, 2403–2410 (2008)CrossRefGoogle Scholar
  22. 22.
    Kuruma, Y., Stano, P., Ueda, T., Luisi, P.L.: A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta 1788, 567–574 (2009)CrossRefGoogle Scholar
  23. 23.
    Kuruma, Y., Suzuki, T., Ono, S., Yoshida, M., Ueda, T.: Functional analysis of membranous fo-a subunit of F1Fo-ATP synthase by in vitro protein synthesis. Biochem. J. 442, 631–638 (2012)CrossRefGoogle Scholar
  24. 24.
    Lazzerini-Ospri, L., Stano, P., Luisi, P., Marangoni, R.: Characterization of the emergent properties of a synthetic quasi-cellular system. BMC Bioinform. 13(4), S9 (2012)Google Scholar
  25. 25.
    Leduc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2, 3–7 (2007)CrossRefGoogle Scholar
  26. 26.
    Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006)CrossRefGoogle Scholar
  27. 27.
    Luisi, P.L., Allegretti, M., Pereira de Souza, T., Steiniger, F., Fahr, A., Stano, P.: Spontaneous protein crowding in liposomes: a new vista for the origin of cellular metabolism. ChemBioChem 11, 1989–1992 (2010)CrossRefGoogle Scholar
  28. 28.
    Luisi, P., Varela, F.: Self-replicating micelles—a chemical version of a minimal autopoietic system. Orig. Life Evol. Biosph. 19, 633–643 (1989)CrossRefGoogle Scholar
  29. 29.
    Mavelli, F., Marangoni, R., Stano, P.: A Simple Protein Synthesis Model for the PURE System Operation. Bull. Math. Biol. 77, 1185–1212 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mavelli, F., Piotto, S.: Stochastic simulations of homogeneous chemically reacting systems. J. Mol. Struct. THEOCHEM 771(13), 55–64 (2006)Google Scholar
  31. 31.
    Mavelli, F., Stano, P.: Experiments on and numerical modeling of the capture and concentration of transcription-translation machinery inside vesicles. Artif. Life 21, 445–463 (2015)CrossRefGoogle Scholar
  32. 32.
    Morris, E., Chavez, M., Tan, C.: Dynamic biomaterials: toward engineering autonomous feedback. Curr. Opin. Biotechnol. 39, 97–104 (2016)CrossRefGoogle Scholar
  33. 33.
    Nakano, T., Moore, M., Enomoto, A., Suda, T.: Molecular communication technology as a biological ICT. In: Sawai, H. (ed.) Biological Functions for Information and Communication Technologies, pp. 49–86. Studies in Computational Intelligence, Springer, Berlin Heidelberg (2011)CrossRefGoogle Scholar
  34. 34.
    Noireaux, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. U.S.A. 101, 17669–17674 (2004)CrossRefGoogle Scholar
  35. 35.
    Oberholzer, T., Albrizio, M., Luisi, P.L.: Polymerase chain reaction in liposomes. Chem. Biol. 2, 677–682 (1995)CrossRefGoogle Scholar
  36. 36.
    Oberholzer, T., Nierhaus, K.H., Luisi, P.L.: Protein expression in liposomes. Biochem. Biophys. Res. Commun. 261, 238–241 (1999)CrossRefGoogle Scholar
  37. 37.
    Oberholzer, T., Wick, R., Luisi, P.L., Biebricher, C.K.: Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem. Biophys. Res. Commun. 207, 250–257 (1995)CrossRefGoogle Scholar
  38. 38.
    Paleos, C.M., Tsiourvas, D., Sideratou, Z.: Interaction of vesicles: adhesion, fusion and multicompartment systems formation. ChemBioChem 12, 510–521 (2011)CrossRefGoogle Scholar
  39. 39.
    Pautot, S., Frisken, B.J., Weitz, D.A.: Production of unilamellar vesicles using an inverted emulsion. Langmuir 19, 2870–2879 (2003)CrossRefGoogle Scholar
  40. 40.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge MA (2000)Google Scholar
  41. 41.
    Pohorille, A., Deamer, D.: Artificial cells: prospects for biotechnology. Trends Biotechnol. 20(3), 123–128 (2002)CrossRefGoogle Scholar
  42. 42.
    Rossi, F., Budroni, M.A., Marchettini, N., Cutietta, L., Rustici, M., Liveri, M.L.T.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480, 322–326 (2009)CrossRefGoogle Scholar
  43. 43.
    Rossi, F., Zenati, A., Ristori, S., Noel, J.M., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Activatory coupling among oscillating droplets produced in microfluidic based devices. Int. J. Unconv. Comput. 11, 23–36 (2015)Google Scholar
  44. 44.
    Scott, A., Noga, M.J., de Graaf, P., Westerlaken, I., Yildirim, E., Danelon, C.: Cell-free phospholipid biosynthesis by gene-encoded enzymes reconstituted in liposomes. PLoS ONE 11, e0163058 (2016)CrossRefGoogle Scholar
  45. 45.
    Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., Ueda, T.: Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001)CrossRefGoogle Scholar
  46. 46.
    de Souza, T., Steiniger, F., Stano, P., Fahr, A., Luisi, P.L.: Pereira Spontaneous crowding of ribosomes and proteins inside vesicles: a possible mechanism for the origin of cell metabolism. Chembiochem 12, 2325–2330 (2011)CrossRefGoogle Scholar
  47. 47.
    Stano, P., Carrara, P., Kuruma, Y., de Souza, T.P., Luisi, P.L.: Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem. 21, 18887–18902 (2011)CrossRefGoogle Scholar
  48. 48.
    Stano, P., D’Aguanno, E., Bolz, J., Fahr, A., Luisi, P.L.: A remarkable self-organization process as the origin of primitive functional cells. Angew. Chem. Int. Ed. Engl. 52, 13397–13400 (2013)CrossRefGoogle Scholar
  49. 49.
    Stano, P., Luisi, P.L.: Semi-synthetic minimal cells: origin and recent developments. Curr. Opin. Biotechnol. (2013)Google Scholar
  50. 50.
    Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., Luisi, P.L.: Semi-synthetic minimal cells as a tool for biochemical ICT. Biosystems 109, 24–34 (2012)CrossRefGoogle Scholar
  51. 51.
    Stockmann, T.J., Nol, J.M., Ristori, S., Combellas, C., Abou-Hassan, A., Rossi, F., Kanoufi, F.: Scanning electrochemical microscopy of belousovzhabotinsky reaction: how confined oscillations reveal short lived radicals and auto-catalytic species. Anal. Chem. 87, 9621–9630 (2015)CrossRefGoogle Scholar
  52. 52.
    Szostak, J.W., Bartel, D.P., Luisi, P.L.: Synthesizing life. Nature 409, 387–390 (2001)CrossRefGoogle Scholar
  53. 53.
    Tomasi, R., Nol, J.M., Zenati, A., Ristori, S., Rossi, F., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem. Sci. 5, 1854–1859 (2014)CrossRefGoogle Scholar
  54. 54.
    Vlassov, A.V., Magdaleno, S., Setterquist, R., Conrad, R.: Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta (BBA)—Gen. Subj. 1820, 940–948 (2012)Google Scholar
  55. 55.
    Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.: Autopoietic self-reproduction of fatty-acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994)CrossRefGoogle Scholar
  56. 56.
    Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10(2), 122–133 (2009)CrossRefGoogle Scholar
  57. 57.
    Yanagisawa, M., Iwamoto, M., Kato, A., Yoshikawa, K., Oiki, S.: Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: experimental verification with the potassium channel KcsA. J. Am. Chem. Soc. 133, 11774–11779 (2011)CrossRefGoogle Scholar
  58. 58.
    Yu, W., Sato, K., Wakabayashi, M., Nakaishi, T., Ko-Mitamura, E.P., Shima, Y., Urabe, I., Yomo, T.: Synthesis of functional protein in liposome. J. Biosci. Bioeng. 92, 590–593 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pasquale Stano
    • 1
    Email author
  • Giordano Rampioni
    • 1
  • Francesca D’Angelo
    • 1
  • Emiliano Altamura
    • 2
  • Fabio Mavelli
    • 2
  • Roberto Marangoni
    • 3
  • Federico Rossi
    • 4
  • Luisa Damiano
    • 5
    • 6
  1. 1.Sciences DepartmentRoma Tre UniversityRomeItaly
  2. 2.Chemistry DepartmentUniversity of BariBariItaly
  3. 3.Biology DepartmentUniversity of PisaPisaItaly
  4. 4.Department of Chemistry and BiologyUniversity of SalernoSalernoItaly
  5. 5.ESARG (Epistemology of the Sciences of the Artificial Research Group), Department of Ancient and Modern CivilizationsUniversity of MessinaMessinaItaly
  6. 6.CERCO (Centre for Research on Complex Systems)University of BergamoBergamoItaly

Personalised recommendations