Environmental Application of Extra-Framework Oxygen Anions in the Nano-Cages of Mayenite

  • Adriano Intiso
  • Raffaele Cucciniello
  • Stefano Castiglione
  • Antonio Proto
  • Federico RossiEmail author
Part of the Lecture Notes in Bioengineering book series (LNBE)


Trichloroethylene (TCE) is a chlorinated volatile organic compound (CVOC), used in the last years in dry-cleaning applications and as degreasing agent. In this study we report on the catalytic oxidation of gaseous trichloroethylene (TCE), in a fixed bed reactor, performed by using mayenite (Ca12Al14O33) synthetized by using the ceramic method. Results show that mayenite promoted the total oxidation of TCE to carbon dioxide and chlorine in the temperature range 300–500 °C. The catalyst is stable under the investigated reaction conditions showing high recyclability and could be used for several reaction cycles without any loss of activity and selectivity.


Mayenite Trichloroethylene Catalytic oxidation Chlorinated VOCs 



The authors acknowledge the support by the grants ORSA158121 and ORSA167988 funded by the University of Salerno (FARB ex 60%).


  1. 1.
    Greene, H.L., Prakash, D.S., Athota, K.V.: Combined sorbent/catalyst media for destruction of halogenated VOCs. App. Cat. B: Environ. 7(3–4), 213–224 (1996)CrossRefGoogle Scholar
  2. 2.
    Caldwell, J., Blair, A., Bull, R.J., Charbotel, B.: Trichloroethylene, tetrachloroethylene and some other chlorinated agents. IARC Monographs on the evaluation of carcinogenic risks to humans, IARC (International Agency for Research on Cancer) 106, 1–514 (2014)Google Scholar
  3. 3.
    Rossi, F., Cucciniello, R., Intiso, A., Proto, A., Motta, O., Marchettini, N.: Determination of the trichloroethylene diffusion coefficient in water. AIChE J. 61(10), 3511–3515 (2015)CrossRefGoogle Scholar
  4. 4.
    Fan, A.M.: Trichloroethylene: water contamination and health risk assessment. Reviews of Environmental Contamination and Toxicology, pp. 55–92. Springer, (1988)Google Scholar
  5. 5.
    Boulding, J.R.: EPA Environmental Engineering Sourcebook, pp. 87–100. CRC Press, (1996)Google Scholar
  6. 6.
    Huang, L., Yang, Z., Li, B., Hu, J., Zhang, W., Ying, W.C.: Granular activated carbon adsorption process for removing trichloroethylene from groundwater. AIChE J. 57(2), 542–550 (2011)CrossRefGoogle Scholar
  7. 7.
    Moccia, E., Intiso, A., Cicatelli, A., Proto, A., Guarino, F., Iannece, P., Castiglione, S., Rossi, F.: Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Poll. Res. 24, 11053–11060 (2017)Google Scholar
  8. 8.
    Costanza, J., Mulholland, J., Pennell, K.: Effects of Thermal Treatments on the Chemical Reactivity of Trichloroethylene, US EPA, (2007)Google Scholar
  9. 9.
    Romero-Sáez, M., Divakar, D., Aranzabal, A., González-Velasco, J.R., González-Marcos, J.A.: Catalytic oxidation of trichloroethylene over Fe-ZSM-5: influence of the preparation method on the iron species and the catalytic behavior. App. Cat. B: Environ. 180, 210–218 (2016)CrossRefGoogle Scholar
  10. 10.
    Blanch-Raga, N., Palomares, A.E., Martínez-Triguero, J., Valencia, S.: Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. App. Cat. B: Environ. 187, 90–97 (2016)CrossRefGoogle Scholar
  11. 11.
    Divakar, D., Romero-Sáez, M., Pereda-Ayo, B., Aranzabal, A., González-Marcos, J.A., González-Velasco, J.R.: Catalytic oxidation of trichloroethylene over Fe-zeolites. Catal. Today 176, 357–360 (2011)CrossRefGoogle Scholar
  12. 12.
    López-Fonseca, R., Gutiérrez-Ortiz, J.I., González-Velasco, J.R.: Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts. App. Cat. A: Gen. 271, 39–46 (2004)CrossRefGoogle Scholar
  13. 13.
    Blanch-Raga, N., Palomares, A.E., Martínez-Triguero, J., Puche, M., Fetter, G., Bosch, P.: The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. App. Cat. B: Environ. 160, 129–134 (2014)CrossRefGoogle Scholar
  14. 14.
    Aranzabal, A., Romero-Sáez, M., Elizundia, U., González-Velasco, J.R., González-Marcos, J.A.: Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. J. Catal. 296, 165–174 (2012)Google Scholar
  15. 15.
    Gawande, M.B., Bonifácio, V.D.B., Luque, R., Branco, P.S., Varma, R.S.: Solvent-free and catalysts-free chemistry: a benign pathway to sustainability. Chem. Sus. Chem. 7, 24–44 (2014)CrossRefGoogle Scholar
  16. 16.
    Cespi, D., Cucciniello, R., Ricciardi, M., Capacchione, C., Vassura, I., Passarini, F., Proto, A.: A simplified early stage assessment of process intensification: glycidol as a value-added product from epichlorohydrin industry wastes. Green Chem. 18, 4559–4570 (2016)CrossRefGoogle Scholar
  17. 17.
    Cucciniello, R., Pironti, C., Capacchione, C., Proto, A., Di Serio, M.: Efficient and selective conversion of glycidol to 1, 2-propanediol over Pd/C catalyst. Catal. Comm. 77, 98–102 (2016)CrossRefGoogle Scholar
  18. 18.
    Cucciniello, R., Proto, A., Alfano, D., Motta, O.: Synthesis, characterization and field evaluation of a new calcium-based CO2 absorbent for radial diffusive sampler. Atmos. Environ. 60, 82–87 (2012)CrossRefGoogle Scholar
  19. 19.
    Cucciniello, R., Proto, A., Rossi, F., Motta, O.: Mayenite based supports for atmospheric NOx sampling. Atmos. Environ. 79, 666–671 (2013)CrossRefGoogle Scholar
  20. 20.
    Kitano, M., Inoue, Y., Yamazaki, Y., Hayashi, F., Kanbara, S., Matsuishi, S., Yokohama, T., Kim, S., Hara, M., Hosono, H.: Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chem. 4, 934–940 (2012)CrossRefGoogle Scholar
  21. 21.
    Hayashi, F., Tomota, Y., Kitano, M., Toda, Y., Yokoyama, T., Hosono, H.: NH2–dianion entrapped in a nanoporous 12CaO⋅7Al2O3 crystal by ammonothermal treatment: reaction pathways, dynamics, and chemical stability. J. Am. Chem. Soc. 136, 11698–11706 (2014)CrossRefGoogle Scholar
  22. 22.
    Proto, A., Cucciniello, R., Genga, A., Capacchione, C.: A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium. Cat. Comm. 68, 41–45 (2015)CrossRefGoogle Scholar
  23. 23.
    Lacerda, M., Irvine, J.T.S, Glasser, F.P., West, A.R.: High oxide ion conductivity in Ca12Al14O33. Nature 332, 525–526 (1988)Google Scholar
  24. 24.
    Ruszak, M., Inger, M., Witkowski, S., Wilk, M., Kotarba, A., Sojka, Z.: Selective N2O removal from the process gas of nitric acid plants over ceramic 12CaO· 7Al2O3 catalyst. Catal. Lett. 126, 72–77 (2008)CrossRefGoogle Scholar
  25. 25.
    Li, C., Hirabayashi, D., Suzuki, K.: A crucial role of O2 and O2 2− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. App. Cat. B: Environ. 88, 351–360 (2009)CrossRefGoogle Scholar
  26. 26.
    Li, C., Hirabayashi, D., Suzuki, K.: Synthesis of higher surface area mayenite by hydrothermal method. Mat. Res. Bull. 46, 1307–1310 (2011)CrossRefGoogle Scholar
  27. 27.
    Cucciniello, R., Proto, A., Rossi, F., Marchettini, N., Motta, O.: An improved method for BTEX extraction from charcoal. Anal. Methods 7, 4811–4815 (2015)CrossRefGoogle Scholar
  28. 28.
    Proto, A., Cucciniello, R., Rossi, F.: Motta, O: Stable carbon isotope ratio in atmospheric CO2 collected by new diffusive devices. Environ. Sci. Poll. Res. 21, 3182–3186 (2013)CrossRefGoogle Scholar
  29. 29.
    Mendez, M., Ciuraru, R., Gosselin, S., Batut, S., Visez, N., Petitprez, D.: Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and product identification. Atmos. Chem. Phys. 13, 11661–11673 (2013)CrossRefGoogle Scholar
  30. 30.
    Teusner, M., De Souza, R.A., Krause, H., Ebbinghaus, S.G., Belghoul, B., Martin, M.: Oxygen diffusion in mayenite. J. Phys. Chem. C 119, 9721–9727 (2015)CrossRefGoogle Scholar
  31. 31.
    Schmidt, A., Lerch, M., Eufinger, J.-P., Janek, J., Tranca, I., Islam, M.M., Bredow, T., Dolle, R., Wiemöfer, H.D., Boysen, H., Hölzel, M.: Solid State Ionics 254, 48–58 (2014)CrossRefGoogle Scholar
  32. 32.
    Cucciniello, R., Intiso, A., Castiglione, S., Genga, A., Proto, A., Rossi, F.: Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. App. Cat. B: Environ. 204, 167–172 (2017)CrossRefGoogle Scholar
  33. 33.
    Aranzabal, A., Pereda-Ayo, B., Pilar Gonzalez Marcos, M., González-Marcos, J.A., López- Fonseca, R., González-Velasco, J.R.: State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chemi. Pap. 68, 1169–1186 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Adriano Intiso
    • 1
  • Raffaele Cucciniello
    • 1
  • Stefano Castiglione
    • 1
  • Antonio Proto
    • 1
  • Federico Rossi
    • 1
    Email author
  1. 1.Department of Chemistry and BiologyUniversity of SalernoFiscianoItaly

Personalised recommendations