A Computational Approach to the Design of Scaffolds for Bone Tissue Engineering

  • Antonio BoccaccioEmail author
  • Antonio Emmanuele Uva
  • Michele Fiorentino
  • Vitoantonio Bevilacqua
  • Carmine Pappalettere
  • Giuseppe Monno
Part of the Lecture Notes in Bioengineering book series (LNBE)


Design of scaffolds for tissue engineering entails multi-disciplinary and multi-scale aspects. Since in vivo analysis of the tissue regeneration process is quite difficult in terms of selecting experimental protocols and requires considerable amount of time, a variety of numerical models have been developed to simulate mechanisms of tissue differentiation. The tremendous enhancement in computing power led researchers to develop more and more sophisticated models mostly based on finite element techniques and mechano-regulation computational models. In this article, we present an algorithm that combines the finite element model of an open-porous scaffold, a numerical optimization routine and a mechanobiological model. This algorithm has been utilized to determine both, the best scaffold geometry and the best load value (to apply on the scaffold) that allow the bone formation to be maximized.


Geometry optimization Scaffold micro-architecture Bone tissue scaffold Computational mechanobiology 


  1. 1.
    O’Brien, F.: Biomaterials & scaffolds for tissue engineering. Mater. today 14, 88–95 (2011)CrossRefGoogle Scholar
  2. 2.
    Lacroix, D., Planell, J.A., Prendergast, P.J.: Computer-aided design and finite element modelling of biomaterial scaffolds for bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1993–2009 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M.: A mathematical approach to bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367, 2055–2078 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)CrossRefGoogle Scholar
  5. 5.
    Sun, W., Lal, P.: Recent development on computer aided tissue engineering—a review. Comput. Methods Programs Biomed. 67, 85–103 (2002)CrossRefGoogle Scholar
  6. 6.
    Sun, W., Darling, A., Starly, B., Nam, J.: Computer aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39, 29–47 (2004)CrossRefGoogle Scholar
  7. 7.
    Sun, W., Starly, B., Darling, A., Gomez, C.: Computer aided tissue engineering: biomimetic modelling and design of tissue engineering. Biotechnol. Appl. Biochem. 39, 49–58 (2004)CrossRefGoogle Scholar
  8. 8.
    Zadpoor, A.A.: Bone tissue regeneration: the role of scaffold geometry. Biomater. Sci. 3, 231–245 (2015)CrossRefGoogle Scholar
  9. 9.
    Rumpler, M., Woesz, A., Dunlop, J.W., van Dongen, J.T., Fratzl, P.: The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface 5, 1173–1180 (2008)CrossRefGoogle Scholar
  10. 10.
    Bidan, C.M., Kommareddy, K.P., Rumpler, M., Kollmannsberger, P., Bréchet, Y.J., Fratzl, P., Dunlop, J.W.: How linear tension converts to curvature: geometric control of bone tissue growth. PLoS ONE 7, e36336 (2012)CrossRefGoogle Scholar
  11. 11.
    Boccaccio, A., Ballini, A., Pappalettere, C., Tullo, D., Cantore, S., Desiate, A.: Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int. J. Biol. Sci. 7, 112–132 (2011)CrossRefGoogle Scholar
  12. 12.
    Boccaccio, A., Messina, A., Pappalettere, C., Scaraggi, M.: Finite element modelling of bone tissue scaffolds. In: Zhongmin, J. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, pp. 485–511 (2014)Google Scholar
  13. 13.
    Guyot, Y., Papantoniou, I., Chai, Y.C., Van Bael, S., Schrooten, J., Geris, L.: A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study. Biomech. Model. Mechanobiol. 13, 1361–1371 (2014)CrossRefGoogle Scholar
  14. 14.
    Menolascina, F., Bellomo, D., Maiwald, T., Bevilacqua, V., Ciminelli, C., Paradiso, A., Tommasi, S.: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics. 10(S-12) pp. 4, (2009)Google Scholar
  15. 15.
    Bevilacqua, V., Ivona, F., Cafarchia, D., Marino, F.: An evolutionary optimization method for parameter search in 3d points cloud reconstruction. In: Intelligent Computing Theories. Lecture Notes in Computer Science, vol. 7995 pp. 601–611. Springer (2013)Google Scholar
  16. 16.
    Byrne, D.P., Lacroix, D., Planell, J.A., Kelly, D.J., Prendergast, P.J.: Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28, 5544–5554 (2007)CrossRefGoogle Scholar
  17. 17.
    Boccaccio, A., Prendergast, P.J., Pappalettere, C., Kelly, D.J.: Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med. Biol. Eng. Comput. 46, 283–298 (2008)CrossRefGoogle Scholar
  18. 18.
    Boccaccio, A., Pappalettere, C., Kelly, D.J.: The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann. Biomed. Eng. 35, 1940–1960 (2007)CrossRefGoogle Scholar
  19. 19.
    Boccaccio, A., Lamberti, L., Pappalettere, C.: Effects of aging on the latency period in mandibular distraction osteogenesis: a computational mechano-biological analysis. J. Mech. Med. Biol. 8, 203–225 (2008)CrossRefGoogle Scholar
  20. 20.
    Boccaccio, A., Kelly, D.J., Pappalettere, C.: A Mechano-Regulation Model of Fracture Repair in Vertebral Bodies. J. Orthop. Res. 29, 433–443 (2011)CrossRefGoogle Scholar
  21. 21.
    Boccaccio, A., Kelly, D.J., Pappalettere, C.: A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation. Med. Biol. Eng. Comput. 50, 947–959 (2012)CrossRefGoogle Scholar
  22. 22.
    Boccaccio, A., Uva, A.E., Fiorentino, M., Lamberti, L., Monno, G.: A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int. J. Biol. Sci. 12, 1–17 (2016)CrossRefGoogle Scholar
  23. 23.
    Bevilacqua, V., Filograno, G., Fiorentino, M., Uva, A.E. Early diagnosis of lung tumors by genetically optimized 3d-metaball malignancy metric. In Genetic and Evolutionary Computation Conference, GECCO ’12, pages 531–538. ACM (2012)Google Scholar
  24. 24.
    Fiorentino, M., Monno, G., Uva, A.E.: Interactive ‘touch and see’ FEM simulation using augmented reality. Int. J. Eng. Educ. 25, 1124–1128 (2009)Google Scholar
  25. 25.
    Boccaccio, A., Uva, A.E., Fiorentino, M., Mori, G., Monno, G.: Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach. PLoS ONE 11, e0146935 (2016)CrossRefGoogle Scholar
  26. 26.
    Prendergast, P.J., Huiskes, R., Søballe, K.: Biophisical stimuli on cells during tissue differentiation at implant interfaces. J. Biomec. 30, 539–548 (1997)CrossRefGoogle Scholar
  27. 27.
    Huiskes, R., van Driel, W.D., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model of periprosthetic tissue differentiation. J. Mater. Sci. Mater. Med. 8, 785–788 (1997)CrossRefGoogle Scholar
  28. 28.
    Mehdizadeh, H., Sumo, S., Bayrak, E.S., Brey, E.M., Cinar, A.: Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials 34, 2875–2887 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Antonio Boccaccio
    • 1
    Email author
  • Antonio Emmanuele Uva
    • 1
  • Michele Fiorentino
    • 1
  • Vitoantonio Bevilacqua
    • 2
  • Carmine Pappalettere
    • 1
  • Giuseppe Monno
    • 1
  1. 1.Dipartimento di MeccanicaMatematica e Management, Politecnico di BariBariItaly
  2. 2.Dipartimento di Ingegneria Elettrica e Dell‘Informazione Politecnico di BariBariItaly

Personalised recommendations