Skip to main content

Tensor Notation

A Working Knowledge in Tensor Analysis

  • Chapter
  • First Online:
  • 2848 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

This chapter is not meant as a replacement for a course in tensor analysis, but it will provide a sufficient working background to tensor notation and algebra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhan Phan-Thien .

Problems

Problems

Problem 1.1

The components of vectors u, v, and w are given by \(u_{i}\), \(v_{i}\), \(w_{i}\). Verify that

$$\begin{aligned} \mathbf {u}\cdot \mathbf {v}&=u_{i}v_{i}, \\ \mathbf {u}\times \mathbf {v}&=\varepsilon _{ijk}\mathbf {e}_{i}u_{j}v_{k}, \\ \left( {\mathbf {u}\times \mathbf {v}}\right) \cdot \mathbf {w}&=\varepsilon _{ijk}u_{i}v_{j}w_{k}, \\ \left( {\mathbf {u}\times \mathbf {v}}\right) \cdot \mathbf {w}&=\mathbf {u} \cdot \left( {\mathbf {v}\times \mathbf {w}}\right) , \\ \left( {\mathbf {u}\times \mathbf {v}}\right) \times \mathbf {w}&=\left( { \mathbf {u}\cdot \mathbf {w}}\right) \mathbf {v}-\left( {\mathbf {v}\cdot \mathbf {w }}\right) \mathbf {u}, \\ \left( {\mathbf {u}\times \mathbf {v}}\right) ^{2}&=u^{2}v^{2}-\left( { \mathbf {u}\cdot \mathbf {v}}\right) ^{2}, \end{aligned}$$

where \(u^{2}=\left| \mathbf {u}\right| ^{2}\) and \(v^{2}=\left| \mathbf {v} \right| ^{2}.\)

Problem 1.2

Let A be a \(3\times 3\) matrix with entries \(A_{ij}\),

$$ \left[ \mathbf {A}\right] =\left[ { \begin{array}{*{20}c} {A_{11} } &{} {A_{12} } &{} {A_{13} } \\ {A_{21} } &{} {A_{22} } &{} {A_{23} } \\ {A_{31} } &{} {A_{32} } &{} {A_{33} } \\ \end{array}}\right] . $$

Verify that

$$\begin{aligned} \det \left[ \mathbf {A}\right]&=\varepsilon _{ijk}A_{1i}A_{2j}A_{3k}=\varepsilon _{ijk}A_{i1}A_{j2}A_{k3}, \\ \varepsilon _{lmn}\det \left[ \mathbf {A}\right]&=\varepsilon _{ijk}A_{il}A_{jm}A_{kn}=\varepsilon _{ijk}A_{li}A_{mj}A_{nk}, \\ \det \left[ \mathbf {A}\right]&=\frac{1}{6}\varepsilon _{ijk} \varepsilon _{lmn}A_{il}A_{jm}A_{kn}. \end{aligned}$$

Problem 1.3

Verify that

$$ \varepsilon _{ijk} \varepsilon _{imn} = \delta _{jm} \delta _{kn} - \delta _{jn} \delta _{km} . $$

Given that two \(3\times 3\) matrices of components

$$ \left[ \mathbf {A} \right] = \left[ { \begin{array}{*{20}c} {A_{11} } &{} {A_{12} } &{} {A_{13} } \\ {A_{21} } &{} {A_{22} } &{} {A_{23} } \\ {A_{31} } &{} {A_{32} } &{} {A_{33} } \\ \end{array}} \right] ,\;\;\left[ \mathbf {B} \right] = \left[ { \begin{array}{*{20}c} {B_{11} } &{} {B_{12} } &{} {B_{13} } \\ {B_{21} } &{} {B_{22} } &{} {B_{23} } \\ {B_{31} } &{} {B_{32} } &{} {B_{33} } \\ \end{array}} \right] $$

verify that if \(\left[ \mathbf {C} \right] = \left[ \mathbf {A} \right] \cdot \left[ \mathbf {B} \right] ,\) then the components of C are \(C_{ij} = A_{ik} B_{kj}.\) Thus if \(\left[ \mathbf {D} \right] = \left[ \mathbf {A} \right] ^{T} \left[ \mathbf {B} \right] ,\) then \(D_{ij} = A_{ki} B_{kj} .\)

Problem 1.4

Show that, if \(\left[ A_{ij}\right] \) is a frame rotation matrix,

$$\begin{aligned} \det \left[ {A_{ij}}\right]&=\left( {\mathbf {e^{\prime }}_{1}\times \mathbf { e^{\prime }}_{2}}\right) \cdot \mathbf {e^{\prime }}_{3}=1. \\ \left[ \mathbf {A}\right] ^{T}\left[ \mathbf {A}\right]&=\left[ \mathbf {A} \right] \left[ \mathbf {A}\right] ^{T}=\left[ \mathbf {I}\right] ,\;\;\left[ \mathbf {A}\right] ^{-1}=\left[ \mathbf {A}\right] ^{T},\;\;\det \left[ \mathbf { A}\right] =1. \end{aligned}$$

Problem 1.5

Verify that

$$ \varepsilon _{ijk}u_{i}v_{j}w_{k}=\det \left[ { \begin{array}{*{20}c} {u_1 } &{} {u_2 } &{} {u_3 } \\ {v_1 } &{} {v_2 } &{} {v_3 } \\ {w_1 } &{} {w_2 } &{} {w_3 } \\ \end{array}}\right] . $$

Consider a second-order tensor \(W_{ij}\) and a vector \(u_{i}=\varepsilon _{ijk}W_{jk}\). Show that if W is symmetric, u is zero, and if W is anti-symmetric the components of u are twice those of W in magnitude. This vector is said to be the axial vector of W.

Hence, show that the axial vector associated with the vorticity tensor of (1.14) is \(-\nabla \times \mathbf {u}\).

Problem 1.6

If \(\mathbf {D}\), \(\mathbf {S}\) and \(\mathbf {W}\) are second-order tensors, \( \mathbf {D}\) symmetric and \(\mathbf {W}\) anti-symmetric, show that

$$ \begin{array}{l} \mathbf {D}:\mathbf {S}=\mathbf {D}:\mathbf {S}^{T}=\mathbf {D}:\frac{1}{2}\left( {\mathbf {S}+\mathbf {S}^{T}}\right) , \\ \mathbf {W}:\mathbf {S}=-\mathbf {W}:\mathbf {S}^{T}=\mathbf {W}:\frac{1}{2} \left( {\mathbf {W}-\mathbf {W}^{T}}\right) , \\ \mathbf {D}:\mathbf {W}=0. \end{array} $$

Further, show that

$$ \begin{array}{l} \text {if }\mathbf {T}:\mathbf {S}=0\;\;\forall \mathbf {S}\text { then }\mathbf {T}=0, \\ \text {if }\mathbf {T}:\mathbf {S}=0\;\;\forall \text { symmetric }\mathbf {S}\text { then }\mathbf {T}\text { is anti-symmetric}, \\ \text {if }\mathbf {T}:\mathbf {S}=0\;\;\forall \text { anti-symmetric }\mathbf {S}\text { then }\mathbf {T}\text { is symmetric}\mathrm {.} \end{array} $$

Problem 1.7

Show that \(\mathbf {Q}\) is orthogonal if and only if \(\mathbf {H}=\mathbf {Q}- \mathbf {I}\) satisfies

$$ \mathbf {H}+\mathbf {H}^{T}+\mathbf {HH}^{T}=0,\;\;\;\;\mathbf {HH}^{T}=\mathbf {H }^{T}\mathbf {H}. $$

Problem 1.8

Show that, if \(\mathbf {S}\) is a second-order tensor, then \(I=\mathrm {tr}\ \mathbf {S}\), \(II=\mathrm {tr}\ \mathbf {S}^{2}\), \(III=\mathrm {\det \ }\mathbf {S }\) are indeed invariants. In addition, show that

$$ \det \left( {\mathbf {S}-\omega \mathbf {I}}\right) =-\omega ^{3}+I_{1}\omega ^{2}-I_{2}\omega +I_{3}. $$

If \(\omega \) is an eigenvalue of \(\mathbf {S}\) then \(\det \left( {\mathbf {S} -\omega \mathbf {I}}\right) =0.\) This is said to be the characteristic equation for \(\mathbf {S}\).

Problem 1.9

Apply the result above to find the square root of the Cauchy-Green tensor in a two-dimensional shear deformation

$$ \left[ \mathbf {C}\right] =\left[ { \begin{array}{*{20}c} {1 + \gamma ^2 } &{} \gamma \\ \gamma &{} 1 \\ \end{array}}\right] . $$

Investigate the corresponding formula for the square root of a symmetric positive definite tensor \(\mathbf {S}\) in three dimensions.

Problem 1.10

Write down all the components of the strain rate tensor and the vorticity tensor in a Cartesian frame.

Problem 1.11

Given that \(\mathbf {r}=x_{i}\mathbf {e}_{i}\) is the position vector, \(\mathbf { a}\) is a constant vector, and f(r) is a function of \(r=|\mathbf {r}|\), show that

$$ \nabla \cdot \mathbf {r}=3,\;\;\;\nabla \times \mathbf {r}=\mathbf {0} ,\;\;\;\nabla \left( {\mathbf {a}\cdot \mathbf {r}}\right) =\mathbf {a} ,\;\;\;\nabla f=\frac{1}{r}\frac{{df}}{{dr}}\mathbf {r}. $$

Problem 1.12

Show that the divergence of a second-order tensor \(\mathbf {S}\) in cylindrical coordinates is given by

$$\begin{aligned} \nabla \cdot \mathbf {S}&=\mathbf {e}_{r}\left( {\frac{{\partial S_{rr}}}{{ \partial r}}+\frac{{S_{rr}-S_{\theta \theta }}}{r}+\frac{1}{r}\frac{{ \partial S_{\theta r}}}{{\partial \theta }}+\frac{{\partial S_{zr}}}{{ \partial z}}}\right) \nonumber \\&+\mathbf {e}_{\theta }\left( {\frac{{\partial S_{r\theta }}}{{\partial r}}+ \frac{{2S_{r\theta }}}{r}+\frac{1}{r}\frac{{\partial S_{\theta \theta }}}{{ \partial \theta }}+\frac{{\partial S_{z\theta }}}{{\partial z}}+\frac{{ S_{\theta r}-S_{r\theta }}}{r}}\right) \nonumber \\&+\mathbf {e}_{z}\left( {\frac{{\partial S_{rz}}}{{\partial r}}+\frac{{S_{rz} }}{r}+\frac{1}{r}\frac{{\partial S_{\theta z}}}{{\partial \theta }}+\frac{{ \partial S_{zz}}}{{\partial z}}}\right) . \end{aligned}$$
(1.55)

Problem 1.13

Show that, in cylindrical coordinates, the Laplacian of a vector \(\mathbf {u}\) is given by

$$\begin{aligned} \nabla ^{2}\mathbf {u}&=\mathbf {e}_{r}\left[ {\frac{\partial }{{\partial r}} \left( {\frac{1}{r}\frac{\partial }{{\partial r}}\left( {ru_{r}}\right) } \right) +\frac{1}{{r^{2}}}\frac{{\partial ^{2}u_{r}}}{{\partial \theta ^{2}}} +\frac{{\partial ^{2}u_{r}}}{{\partial z^{2}}}-\frac{2}{{r^{2}}}\frac{{ \partial u_{\theta }}}{{\partial \theta }}}\right] \nonumber \\&+\mathbf {e}_{\theta }\left[ {\frac{\partial }{{\partial r}}\left( {\frac{1 }{r}\frac{\partial }{{\partial r}}\left( {ru_{\theta }}\right) }\right) + \frac{1}{{r^{2}}}\frac{{\partial ^{2}u_{\theta }}}{{\partial \theta ^{2}}}+ \frac{{\partial ^{2}u_{\theta }}}{{\partial z^{2}}}+\frac{2}{{r^{2}}}\frac{{ \partial u_{r}}}{{\partial \theta }}}\right] \nonumber \\&+\mathbf {e}_{z}\left[ {\frac{1}{r}\frac{\partial }{{\partial r}}\left( {r \frac{{\partial u_{z}}}{{\partial r}}}\right) +\frac{1}{{r^{2}}}\frac{{ \partial ^{2}u_{z}}}{{\partial \theta ^{2}}}+\frac{{\partial ^{2}u_{z}}}{{ \partial z^{2}}}}\right] . \end{aligned}$$
(1.56)

Problem 1.14

Show that, in cylindrical coordinates,

$$\begin{aligned} \mathbf {u}\cdot \nabla \mathbf {u}&=\mathbf {e}_{r}\left[ {u_{r}\frac{{ \partial u_{r}}}{{\partial r}}+\frac{{u_{\theta }}}{r}\frac{{\partial u_{r}}}{ {\partial \theta }}+u_{z}\frac{{\partial u_{r}}}{{\partial z}}-\frac{{ u_{\theta }u_{\theta }}}{r}}\right] \nonumber \\&+\mathbf {e}_{\theta }\left[ {u_{r}\frac{{\partial u_{\theta }}}{{\partial r}} +\frac{{u_{\theta }}}{r}\frac{{\partial u_{\theta }}}{{\partial \theta }}+u_{z} \frac{{\partial u_{\theta }}}{{\partial z}}+\frac{{u_{\theta }u_{r}}}{r}} \right] \nonumber \\&+\mathbf {e}_{z}\left[ {u_{r}\frac{{\partial u_{z}}}{{\partial r}}+\frac{{ u_{\theta }}}{r}\frac{{\partial u_{z}}}{{\partial \theta }}+u_{z}\frac{{ \partial u_{z}}}{{\partial z}}}\right] . \end{aligned}$$
(1.57)

Problem 1.15

The stress tensor in a material satisfies \(\nabla \cdot \mathbf {S}=\mathbf {0}\). Show that the volume-average stress in a region V occupied by the material is

$$\begin{aligned} \left\langle \mathbf {S}\right\rangle =\frac{1}{{2V}}\int _{S}{\left( {\mathbf { xt}+\mathbf {tx}}\right) \, dS}, \end{aligned}$$
(1.58)

where \(\mathbf {t}=\mathbf {n}\cdot \mathbf {S}\) is the surface traction. The quantity on the left side of (1.58) is called the stresslet (Batchelor [4]).

Problem 1.16

Calculate the following integrals on the surface of the unit sphere

$$\begin{aligned} \left\langle {\mathbf {nn}} \right\rangle&= \frac{1}{S}\int _{S} {\mathbf {nn}dS} \end{aligned}$$
(1.59)
$$\begin{aligned} \left\langle {\mathbf {nnnn}} \right\rangle&= \frac{1}{S}\int _{S} {\mathbf { nnnn}dS} . \end{aligned}$$
(1.60)

These are the averages of various moments of a uniformly distributed unit vector on a sphere surface.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Phan-Thien, N., Mai-Duy, N. (2017). Tensor Notation. In: Understanding Viscoelasticity. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-62000-8_1

Download citation

Publish with us

Policies and ethics