A State-of-the-Art Review of Different Conditions Influencing the Behavioral Aspects of Flexible Pavement

  • Piyush G. ChandakEmail author
  • Anand B. Tapase
  • Sabir S. Sayyed
  • Abdulrashid C. Attar
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)


The paper provides a state-of-the-art review of different conditions influencing the behavioral aspects of flexible pavement. The conditions which influence the pavement behavior are loading intensities and tyre pressure intensity, environmental conditions, surface and subsurface temperature, seepage, thickness combinations of different component layers, material properties, etc. Current pavement design and analytical procedures are discussed and questioned. The life of the road is theoretically designed for repetition of standard axle load, wherein, negligence in consideration of overloaded vehicles and high tyre inflation pressures even up to 1 MPa is noticed. The latest developments in the design and analytical procedures of pavements are highlighted. An overview of finite element modeling efforts involving different aspects is also presented. A combined effect of various actual conditions in the field affecting the pavement performance needs to be studied in details, therefore, there is a demand for an application of analytical tool which can accommodate the details of the complex system. In this connection, it should be noted that the versatile finite element solution technique holds a bright promise. Therefore, it is proposed to discuss at length the application of the finite element method towards the design of the flexible pavements.


Flexible pavement Finite element analysis 


  1. 1.
    Sinha, A.K., Chandra, S., Kumar, P.: Finite element analysis of flexible pavement with different subbase materials. Indian Highw. 42(2), 53–63 (2014) (New Delhi)Google Scholar
  2. 2.
    American Association of State Highway Officials AASHTO: AASHTO Guide for the Design of Pavement Structures. AASHTO, Washington, D.C. (1993)Google Scholar
  3. 3.
    Chiasson, A., Yavuzturk, C., Ksaibati, K.: Linearized approach for predicting thermal stresses in asphalt pavements due to environmental conditions. J. Mater. Civ. Eng. ASCE 20(2), 118–127 (2008). doi: 10.1061/(ASCE)0899-1561 CrossRefGoogle Scholar
  4. 4.
    Das, A., Pandey, B.B.: The m-e design of bituminous road: and Indian perspective. J. Transp. Eng. ASCE 125(5), 463–471 (1999). doi: 10.1061/(ASCE)0733-947X CrossRefGoogle Scholar
  5. 5.
    Saad, B., Mitri, H., Poorooshasb, H.: Three-dimensional dynamic analysis of flexible conventional pavement foundation. J. Transp. Eng. ASCE 131(6), 460–469 (2005). doi: 10.1061/ASCE0733-947X CrossRefGoogle Scholar
  6. 6.
    Saad, B., Mitri, H., Poorooshasb, H.: 3D FE analysis of flexible pavement with geosynthetic reinforcement. J. Transp. Eng. ASCE 132(5), 402–415 (2006). doi: 10.1061/ASCE0733-947X2006132:5(402) CrossRefGoogle Scholar
  7. 7.
    Das, A.: Analysis of Pavement Structures. CRC Press, Taylor and Francis, Boca Raton (2015)Google Scholar
  8. 8.
    Diefenderfer, B.K., Al-Qadi, I.L., Diefenderfer, S.D.: Model to predict pavement temperature profile: development and validation. J. Transp. Eng. ASCE 132(2), 162–167 (2006)CrossRefGoogle Scholar
  9. 9.
    Desai, C.S., Abel, J.F.: Introduction to the Finite Element Method- A Numerical Method for Engineering Analysis. CBS Publishers and Distributors, Delhi (2005)Google Scholar
  10. 10.
    Gonzalez, A., Saleh, M.F., Ali, A.: Evaluating nonlinear elastic models for unbound granular materials in the accelerated testing facility. Transportation Research Record No. 1990, pp. 141–149 (2007)Google Scholar
  11. 11.
    Wang, G., Roque, R.: Evaluation of truck tyre types on near-surface pavement response based on finite element analysis. Int. J. Pavement Res. Technol. 4(4), 203–211 (2011)Google Scholar
  12. 12.
    Ziari, H., Khabiri, M.M.: Preventive maintenance of flexible pavement and mechanical properties of steel slag asphalt. J. Environ. Eng. Lands. Manag. 15(3), 188–192 (2010) (Taylor and Francis). doi: 10.1080/16486897.2007.9636928
  13. 13.
    Helwany, S., Dyer, J., Joeleidy, J.: Finite element analysis of flexible pavement. J. Transp. Eng. ASCE 124(5), 491–499 (1998). doi: 10.1061/(ASCE)0733-947X CrossRefGoogle Scholar
  14. 14.
    Yang, H.H.: Pavement Analysis and Design. Pearson Education, Inc., and Dorling Kindersley Publishing, Inc., Upper Saddle River, New York (2008)Google Scholar
  15. 15.
    IRC: 37-2012: Guidelines for the design of flexible pavements. Indian Roads Congress, New DelhiGoogle Scholar
  16. 16.
    Immanuel, S., Timm, D.H.: Measured and theoretical pressures in base and subgrade layers under dynamic truck loading. In: Proceedings of 2006 Airfield and Highway Pavement Specialty Conference, pp. 155–166. American Society of Civil Engineers (2006)Google Scholar
  17. 17.
    Kranthi Kumar, K., Rajasekhar, R.: Reclaimed asphalt pavements in bituminous mixes. Indian Highw. 42, 12–18 (2014). (New Delhi)Google Scholar
  18. 18.
    Su, K., Sun, L., Hachiya, Y., Maekawa, R.: Analysis of shear stress in asphalt pavement contact pressure. In: 6th ICPT Sapporo, Japan, July 2008Google Scholar
  19. 19.
    Kumar, S.S., Sridhar, R., Reddy, K.S., Bose, S.: Analytical investigation on the influence of loading and temperature on top-down cracking in bituminous layers. J. Indian Road Cong. 69(1), 71–77 (2008)Google Scholar
  20. 20.
    NCHRP: Evaluation of mechanistic-empirical design procedure. National Cooperative Highway Research Program, NCHRP Project 1–37A. National Research Council, Washington, D.C (2007)Google Scholar
  21. 21.
    Chakroborty, P., Das, A.: Principles of Transportation Engineering. Prentice Hall of India Private Limited, Delhi (2003)Google Scholar
  22. 22.
    Mulungye, R.M., Owende, P.M.O., Mellon, K.: Finite element modeling of flexible pavement on soft soil subgrades. Mater. Des. 28, 739–756 (2007) (Elsevier)Google Scholar
  23. 23.
    Tarefder, R.A., Saha, N., Stormont, J.: Evaluation of subgrade strength and pavement designs for reliability. J. Transp. Eng. ASCE 136(4), 379–391 (2010). doi: 10.1061/(ASCE)TE.1943-5436.0000103 CrossRefGoogle Scholar
  24. 24.
    Siddharthan, R.V., Sebaaly, P., El-Desouky, M., Strand, D., Huft, D.: Heavy off-road vehicle tyre-pavement interaction and response. J. Transp. Eng. ASCE 131(3), 239–247 (2005). doi: 10.1061/(ASCE)0733-947X CrossRefGoogle Scholar
  25. 25.
    Ranadive, M.S., Katkar, A.B.: Finite element analysis of flexible pavements. Indian Highways 38(6) (2010)Google Scholar
  26. 26.
    Ranadive, M.S., Tapase, A.B.: Investigation of behavioral aspects of flexible pavement under various conditions by finite element method. In: Yang, Q., Zhang, J.-M., Zheng, H., Yao, Y. (eds.) Constitutive modeling of geomaterials. Springer, Berlin, pp. 765–770 (2013). doi: 10.1007/978-3-642-32814-5_100
  27. 27.
    Ranadive, M.S., Tapase, A.: Pavement performance evaluation for different combinations of temperature conditions and bituminous mixes. Innov. Infrastruct. Solut. 1(40), 1–5 (2016). doi: 0.1007/s41062-016-0040-9 (Springer)Google Scholar
  28. 28.
    Ranadive, M.S., Tapase, A.B.: Parameter sensitive analysis of flexible pavement. Int. J. Pavement Res. Technol. (IJPRT) (2016). doi: 10.1016/j.ijprt.2016.12.001 (Elsevier, Special Issue on Sustainability on Pavement Engineering)
  29. 29.
    Rahman, M.T., Mahmud, K., Ahsan, S.: Stress-Strain characteristics of flexible pavement using finite element analysis. Int. J. Civ. Struct. Eng. 2(1), 233–240 (2011)Google Scholar
  30. 30.
    Gogoi, R., Das, A., Chakraborty, P.: Are fatigue and rutting distress modes related? Int. J. Pavement Res. Technol. 6(4), 269–273 (2013)Google Scholar
  31. 31.
    Reddy, K.S., Pandey, B.B.: Lateral placement of commercial vehicle on national highways. HRB Bulletin No. 7, Indian Road Congress, New Delhi (2006)Google Scholar
  32. 32.
    Masad, S., Little, D., Masad, E.: Analysis of flexible pavement response and performance using isotropic and anisotropic material properties. J. Transp. Eng. ASCE 132(4), 342–349 (2006)CrossRefGoogle Scholar
  33. 33.
    Park, S.-W., Lyttol, R.L.: Effect of stress-dependent modulus and Poisson’s ratio on structural responses in thin asphalt pavement. J. Transp. Eng. ASCE 130(3), 387–394 (2004). doi: 10.1061/(ASCE)0733-947X
  34. 34.
    Tapase, A., Ranadive, M.: Performance evaluation of flexible pavement using finite element method. In: ASCE GSP 266, Geo-China 2016: Material, Design, Construction, Maintenance and Testing of Pavement, pp. 9–17 (2016). doi: 10.1061/9780784480090.002
  35. 35.
    Sahoo, U.C., Reddy, K.S.: Effect of nonlinearity in the granular layer on critical pavement responses of low volume roads. Int. J. Pavement Res. Technol. 3(6), 320–325 (2010)Google Scholar
  36. 36.
    Wu, Z., Zhang, Z., King, B., Raghavendra, A., Martinez, M.: Instrumentation and accelerated testing on Louisiana flexible pavements. In: Proceedings of 2006 Airfield and Highway Pavement Specialty Conference, pp. 119–130. American Society of Civil Engineers (2006)Google Scholar
  37. 37.
    Yoder, E.J., Witczak, M.W.: Principles of Pavement Design. Wiley-Interscience Publication, Hoboken (1975)CrossRefGoogle Scholar
  38. 38.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 2. McGraw-Hill, New York (1991)Google Scholar
  39. 39.
    Zuo, G., Drumm, E.C., Meier, R.W.: Environmental effects on the predicted service life of flexible pavements. J. Transp. Eng. 133(1), 47–56 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Piyush G. Chandak
    • 1
    Email author
  • Anand B. Tapase
    • 2
  • Sabir S. Sayyed
    • 1
  • Abdulrashid C. Attar
    • 3
  1. 1.Annasaheb Dange College of Engineering and TechnologyAshtaIndia
  2. 2.Karmaveer Bhaurao Patil College of EngineeringSataraIndia
  3. 3.Rajarambapu Institute of TechnologySakhraleIndia

Personalised recommendations