Skip to main content

Element Case Studies: Manganese

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Manganese (Mn), one of the important trace element in different concentrations in living tissues, is also widely used in the metal industry. It is an essential micronutrient for plants, taken up under the +2 oxidation state, which is crucial in the reactions of some enzymes (malic dehydrogenase, oxalosuccinate decarboxylase, superoxide dismutase), and is an activator of those involved in the tricarboxylic acid cycle. In soils, Mn is commonly in the form of +4 and +3 valency states oxides, which could be reduced to the +2 form by some of the ways, such as acidizing soil solution, waterlogging soil, heating and drying, and by the activity of anaerobic and aerobic micro-organisms. Mn can be taken up by plants growing in base-rich soils in high concentrations. Mn hyperaccumulation plants have been defined by a threshold foliar concentration of over 10,000 μg g−1 dry weight (DW). Mn toxicity could cause stunting, chlorosis, curled leaves, brown lesions, as well as inhibition of photosynthesis and respiration in plants. Several elements such as P and Ca are reported to have important impacts on the uptake and accumulation of Mn in plants. Mn can be stored in vacuoles, cell walls, golgi apparatus, chloroplast lamellae structure, and to form black agglomerations in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam S, Kodam R, Akiha F, Kamei S, Kawai S (2006) Alleviation of manganese phytotoxicity in barley with calcium. J Plant Nutr 29:59–74

    Article  Google Scholar 

  • Archer MJG, Caldwell RA (2004) Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water Air Soil Pollut 157:257–267

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Bidwell SD, Woodrow IE, Batianoff GN, Sommerknudsen J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–905

    Article  Google Scholar 

  • Bidwell SD, Crawford SA, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27:705–716

    Article  Google Scholar 

  • Boudissa SM, Lambert J, Müller C, Kennedy G, Gareau L, Zayed I (2006) Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. Sci Total Environ 361:67–72

    Article  Google Scholar 

  • Doncheva S, Georgieva K, Vassileva V, Stoyanova Z, Popov N, lgnatov G (2005) Effects of succinate on manganese toxicity in pea plants. J Plant Nutr 28:47–62

    Article  Google Scholar 

  • Dou C, Fu X, Chen X, Shi J, Chen Y (2009) Accumulation and interaction of calcium and manganese in Phytolacca americana. Plant Sci 177:601–606

    Article  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    Article  Google Scholar 

  • Dučić T, Thieme J, Polle A (2012) Phosphorus compartmentalization on the cellular level of Douglas fir root as affected by Mn toxicity: a synchrotron-based FTIR approach. Spectroscopy 27(5–6):265–272

    Google Scholar 

  • Esteban E, Deza MJ, Zornoza P (2013) Kinetics of mercury uptake by oil seed rape and white lupin: influence of Mn and Cu. Acta Physiol Plant 35(35):2339–2344

    Article  Google Scholar 

  • Fecht-Christoffers MM, Horst WJ (2006) The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol 140:1451–1463

    Article  Google Scholar 

  • Fernando DR, Batianoff GN (2007) Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293:145–152

    Article  Google Scholar 

  • Fernando DR, Lynch JP (2015) Manganese phytotoxicity: new light on an old problem. Ann Bot 116:313–319

    Article  Google Scholar 

  • Fernando DR, Bakkaus EJ, Perrier N, Baker AJM, Woodrow IE, Batianoff GN, Collins RN (2006a) Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study. New Phytol 171:751–758

    Article  Google Scholar 

  • Fernando DR, Batianoff GN, Baker AJM, Woodrow IE (2006b) In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ 29:1012–1020

    Article  Google Scholar 

  • Fernando DR, Woodrow IE, Jaffre T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus fournieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185

    Google Scholar 

  • Fernando DR, Baker AJM, Woodrow IE (2009) Physiological responses in Macadamia integrifolia on exposure to manganese treatment. Aust J Bot 57:406–413

    Article  Google Scholar 

  • Fernando DR, Marshall AT, Forster PI, Hoebee SE, Siegele R (2013) Multiple metal accumulation within a manganese-specific genus. Am J Bot 100(4):690–700

    Article  Google Scholar 

  • González RC, González-Chávez MC (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92

    Article  Google Scholar 

  • González A, Lynch J (1999) Tolerance of tropical common bean genotypes to manganese toxicity: performance under different growing conditions. J Plant Nutr 22:511–525

    Article  Google Scholar 

  • González A, Steffen K, Lynch JP (1998) Light and excess manganese. Plant Physiol 118:493–504

    Article  Google Scholar 

  • Graham RD, Hannam RJ, Uren NC (1988) Manganese in soils and plants: proceedings of the International Symposium on ‘Manganese in Soils and Plants’ held at the Waite Agricultural Research Institute, the University of Adelaide, Glen Osmond, South Australia, August 22–26, 1988, Springer, Netherlands, 344 pp

    Google Scholar 

  • Hauck M, Paul A, Gross S, Raubuch M (2003) Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ Exp Bot 49:181–191

    Article  Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants VII. Effect of light-intensity on manganese-induced chlorosis. J Plant Nutr 11:235–246

    Article  Google Scholar 

  • Horst WJ, Marschner H (1978) Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L). Plant Soil 50:287–303

    Article  Google Scholar 

  • Hua D, Ming-Shun L, Xu CY (2009) Accumulating characteristics of manganese by Polygonum pubescens Blume. Acta Ecol Sin:5450–5454

    Google Scholar 

  • Jaffré T (1977) Accumulation du manganèse par des espèces associées aux terrains ultrabasiques de Nouvelle Calédonie. Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences Serie D 284:1573–1575

    Google Scholar 

  • Jaffré T (1980) Étude Écologique du peuplement vÉgÉtal des sols dÉrivÉs de roches ultrabasiques en Nouvelle CalÉdonie. Travaux et Documents de I’ ORSTOM, Paris (1980) Étude Écologique du peuplement vÉgÉtal des sols dÉrivÉs de roches ultrabasiques en Nouvelle CalÉdonie, Th Sc Nat Paris Sud-Orsay, 273 p

    Google Scholar 

  • Juice SM, Fahey TJ, Thomas G, Siccama TG, Driscoll CT, Ellen G, Denny EG, Eagar C, Cleavitt NL, Minocha R, Richardson AD (2006) Response of sugar maple to calcium addition to northern hardwoood forest. Ecology 87:1267–1280

    Article  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860

    Article  Google Scholar 

  • Kim D, Gustin JL, Lahner B, Michael W, Baek D, Yun DJ (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39(2):237–251

    Article  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  Google Scholar 

  • Li MS, Luo YP, Su ZY (2007) Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ Pollut 147:168–175

    Article  Google Scholar 

  • Liang WB, Xue SG, Shen JH, Wang P, Wang J (2011) Manganese stress on morphological structures of leaf and ultrastructures of chloroplast of a manganese hyperaccumulator-Phytolacca americana L. Acta Ecol Sin 31(13):3677–3683

    Google Scholar 

  • Liu G, Shu H (2003) Research progress of ecological restoration in mine spoils. Jiangxi Forestry Science and Technology (in Chinese)

    Google Scholar 

  • Liu P, Tang XM, Gong CF, Xu GD (2010) Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant Soil 335:385–395

    Article  Google Scholar 

  • Mizuno T, Emori K, Ito S (2013) Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. et Sav. and its correlation with calcium accumulation. Soil Sci Plant Nutr 59:591–602

    Article  Google Scholar 

  • Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57:117–149

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  Google Scholar 

  • Najeeb U, Xu L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009) Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. J Hazard Mater 170:1156–1163

    Article  Google Scholar 

  • Papadakis IE, Giannakoula A, Therios IN, Bosabalidis AM, Moustakas M, Nastou A (2007) Mn-induced changes in leaf structure and chloroplast ultrastructure of Citrus volkameriana (L.) plants. J Plant Physiol 164:100–103

    Article  Google Scholar 

  • Paschke MW, Valdecantos A, Redente EF (2005) Manganese toxicity thresholds for restoration grass species. Environ Pollut 135:313–322

    Article  Google Scholar 

  • Peris M, Micó C, Recatalá L, Sánchez R, Sánchez J (2007) Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci Total Environ 378:42–48

    Article  Google Scholar 

  • Reimann C, Caritat PD (1998) Chemical elements in the environment: factsheets for the geochemist and environmental scientist. Springer, Berlin, Heidelberg, 398 pp

    Google Scholar 

  • Ren LM, Liu P, Cai MZ, Gen-Di XU, Fang XY, Cheng ZX (2007) Physiological response of Polygonum hydropiper, Comnyza canadensis, Polygonum perfoliatum and Phytolacca americana to manganese toxicity. J Soil Water Conserv 21:81–85

    Google Scholar 

  • Ren LM, Cheng ZF, Liu P, Li ZG (2008) Studies on the physiological response of Phytolacca americana to manganese toxicity by FTIR spectroscopy. Spectrosc Spectr Anal 28(3):582–585

    Google Scholar 

  • Rivera-Becerril F, Juárez-Vázquez LV, Hernández-Cervantes SC, Acevedo-Sandoval OA, Vela-Correa G, Cruz-Chávez E, Moreno-Espíndola IP, Esquivel-Herrera A, de León-González F (2013) Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza. Arch Environ Contam Toxicol 64:219–227

    Article  Google Scholar 

  • Rizwan M, Meunier JD, Davidian JC (2015) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Rev 23(2):1414–1427

    Article  Google Scholar 

  • Robinson BH, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285

    Article  Google Scholar 

  • Shao Z, Sun F (2007) Intracellular sequestration of manganese and phosphorus in a metal-resistant fungus Cladosporium cladosporioides from deep-sea sediment. Extremophiles 11:435–443

    Article  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  Google Scholar 

  • Shi Q, Zhu Z, Xu M, Qian Q, Yu J (2006) Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities. Environ Exp Bot 58:197–205

    Article  Google Scholar 

  • Singh A, Zeng DH, Chen FS (2005) Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India. J Environ Sci 17:168–174

    Google Scholar 

  • St Clair SB, Lynch JP (2004) Photosynthetic and antioxidant enzyme responses of sugar maple and red maple seedlings to excess manganese in contrasting light environments. Funct Plant Biol 31:1005–1014

    Article  Google Scholar 

  • St Clair SB, Lynch JP (2005) Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: implications for sensitivity to manganese toxicity. Tree Physiol 25:85–92

    Article  Google Scholar 

  • St Clair SB, Carlson JE, Lynch JP (2005) Evidence for oxidative stress in sugar maple stands growing on acidic, nutrient imbalanced forest soils. Oecologia 145:258–269

    Article  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  Google Scholar 

  • Wang X, Liu Y, Zeng G, Cha i L, Xiao X, Song XC, Min ZY (2008) Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere 72:1260–1266

    Article  Google Scholar 

  • Weng XY, Zhao LL, Zheng CJ, Zhu JW (2013) Characteristics of the hyperaccumulator plant Phytolacca acinosa (Phytolaccaceae) in response to excess manganese. J Plant Nutr 36:1355–1365

    Article  Google Scholar 

  • Wissemeier AH, Horst WJ (1992) Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L) Walp). Plant Soil 143(2):299–309

    Article  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  Google Scholar 

  • Wu C, Zou Q, Xue SG, Pan WS, Yue X, Hartley W, Huang L, Mo JY (2016) Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Chemosphere 165:478–486

    Article  Google Scholar 

  • Wu C, Huang L, Xue SG, Pan WS, Zou Q, Hartley W, Wong MH (2017) Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice. Chemosphere 168:969–975

    Article  Google Scholar 

  • Xu XH, Shi JY, Chen Y, Chen X, Wang H, Perera A (2006) Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 285:323–331

    Article  Google Scholar 

  • Xu XH, Shi JY, Chen XC, Chen YX, Hu TD (2009) Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 318:197–204

    Article  Google Scholar 

  • Xu XH, Yang JJ, Zhao XY, Zhang XS, Li RY (2015) Molecular binding mechanisms of manganese to the root cell wall of Phytolacca americana L. using multiple spectroscopic techniques. J Hazard Mater 296:185–191

    Article  Google Scholar 

  • Xue SG (2002) Ecological restoration experiment on Xiangtan Manganese Tailings in Southern China. Master’s thesis, Central-South Forestry University, China (in Chinese)

    Google Scholar 

  • Xue SG, Chen YX, Lin Q, Xu SY, Wang YP (2003) Phytolacca acinosa Roxb. (Phytolaccaceae): a new manganese hyperaccumulator plant from southern China. Acta Ecol Sin 23:935–937

    Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  Google Scholar 

  • Xue SG, Chen YX, Baker AJM, Reeves RD (2005) Manganese uptake and accumulation by two populations of Phytolacca acinosa Roxb. (Phytolaccaceae). Water Air Soil Pollut 160:3–14

    Article  Google Scholar 

  • Xue SG, Sheng YE, Zhou F, Tian SX, Wang J, Xu SY, Chen YX (2008) Identity of Phytolacca americana L. (Phytolaccaceae), Pokeweed: a manganese hyperaccumulator plant. Acta Ecol Sin 28:6344–6347. (in Chinese)

    Article  Google Scholar 

  • Xue SG, Zhu F, Wu C, Lei J, Hartley W, Pan WS (2016) Effects of manganese on the microstructures of Chenopodium ambrosioides L. a manganese tolerant plant. Int J Phytoremediation 18:710–719

    Article  Google Scholar 

  • Xue SG, Wang J, Wu C, Li S, Hartley W, Wu H, Zhu F, Cui MQ (2017) Physiological response of Polygonum perfoliatum L. following exposure to elevated manganese concentrations. Environ Sci Pollut Res. doi:10.1007/s11356-016-8312-7

  • Yang SX, Li MS, Li Y, Huang HR (2006) Study on heavy metal pollution in soil and plants in Pingle Manganese Mine, Guangxi and implications for ecological restoration. Min Saf Environ Prot 1:21–23 (in Chinese)

    Google Scholar 

  • Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ 54:441–446

    Google Scholar 

  • Yang J, Zhong LY, Guo RF (2011) Release of Mn(II) during organic acid promoted dissolution of latosol. Environ Chem 30(7):1348–1353

    Google Scholar 

  • Yang QW, Zeng Q, Xiao F, Liu XL, Pan J, Feng J, Yong HZ (2013) Investigation of manganese tolerance and accumulation of two Mn hyperaccumulators Phytolacca americana L. and Polygonum hydropiper L. in the real Mn-contaminated soils near a manganese mine. Environ Earth Sci 68:1127–1134

    Article  Google Scholar 

  • Yuan M, Boqing T, Tang M, Aoyama I (2007) Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Miner Eng 20:188–190

    Article  Google Scholar 

  • Zhang HZ, Liu YG, Huang BR, Xin LI (2004) A survey of heavy-metal content in plants growing on the soil polluted by manganese mine tailings. Chin J Ecol 23:111–113 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengguo Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, C., Xue, S. (2018). Element Case Studies: Manganese. In: Van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-61899-9_16

Download citation

Publish with us

Policies and ethics