Skip to main content

Element Case Studies: Selenium

  • Chapter
  • First Online:

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Selenium hyperaccumulator plants such as Stanleya pinnata, Astragalus bisulcatus, and the newly discovered Cardamine hupingshanensis may play an important role in the Se cycle from soil to plant to human, especially in China. Se-hyperaccumulators can be used for agromining or for phytoremediation of Se, as well as for applications to Se-deficient soils in Se-biofortification strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alford ER, Pilon-Smits EAH, Fakra SC, Paschke MW (2012) Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis. Am J Bot 99:1930–1941

    Article  Google Scholar 

  • Alford ER, Lindblom SD, Pittarello M, Freeman JL, Fakra SC, Marcus MA, Broeckling C, Pilon-Smits EAH, Paschke MW (2014) Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). Am J Bot 101:1895–1905

    Article  Google Scholar 

  • Bai HF, Chen LB, Liu KM, Liu LH (2008) A new species of Cardamine (Brassicaceae) from Hunan, China. Novon 18:135–137

    Article  Google Scholar 

  • Bañuelos GS (2001) The green technology of selenium phytoremediation. Biofactors 14:255–260

    Article  Google Scholar 

  • Bañuelos GS (2006) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ Pollut 144:19–23

    Article  Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608

    Article  Google Scholar 

  • Bañuelos GS, Arroyo IS, Dangi SR, Zambrano MC (2016) Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata. Front Plant Sci. doi:10.3389/fpls.2016.01251

  • Bell PF, Parker DR, Page AL (1992) Contrasting selenite-sulfate interactions in selenium-accumulating and nonaccumulating plant species. Soil Sci Soc Am J 56:1818–1824

    Article  Google Scholar 

  • Brummell DA, Watson LM, Pathirana R, Joyce NI, West PJ, Hunter DA, McKenzie MJ (2011) Biofortification of tomato (Solanum lycopersicum) fruit with the anticancer compound methylselenocysteine using a selenocysteine methyltransferase from a selenium hyperaccumulator. J Agric Food Chem 59:10987–10994

    Article  Google Scholar 

  • Cabannes E, Buchner P, Broadley MR, Hawkesford MJ (2011) A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol 157:2227–2239

    Article  Google Scholar 

  • Chao DY, Baraniecka P, Danku J, Koprivova A, Lahner B, Luo H, Yakubova E, Dilkes B, Kopriva S, Salt DE (2014) Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulphur assimilation enzyme adenosine 5′-phosphosulphate reductase2 across the Arabidopsis species range. Plant Physiol 166:1593–1608

    Article  Google Scholar 

  • Dhillon KS, Dhillon SK (1991) Accumulation of selenium in sugarcane (Sachharum officinarum Linn.) in seleniferous areas of Punjab, India. Environ Geochem Health 13:165–170

    Article  Google Scholar 

  • Dhillon KS, Dhillon SK (2009) Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India. Sci Total Environ 407:6150–6156

    Article  Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    Article  Google Scholar 

  • Domínguez-Álvarez E, Gajdács M, Spengler G, Palop JA, Marc MA, Kiec-Kononowicz K, Amaral L, Molnár J, Jacob C, Handzlik J, Sanmartín C (2016) Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorg Med Chem Lett 26:2821–2824

    Article  Google Scholar 

  • Dong Y, Lisk D, Block E, Ip C (2001) Characterization of the biological activity of γ-glutamyl–Se-methylselenocysteine: a novel, naturally occurring anticancer agent from garlic. Cancer Res 61:2923–2928

    Google Scholar 

  • El Mehdawi AF, Quinn CF, Pilon Smits EAH (2011) Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory. Curr Biol 21(17):1440–1449

    Article  Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Self J, Pilon Smits EAH (2012) Interactions of selenium and non-accumulators during co-cultivation on seleniferous or non-seleniferous soil – The importance of having good neighbors. New Phytol 194:264–277

    Article  Google Scholar 

  • El Mehdawi AF, Lindblom SD, Cappa JJ, Fakra SC, Pilon-Smits EAH (2015) Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-ray microprobe analysis. Int J Phytoremediation 17:753–765

    Article  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    Article  Google Scholar 

  • Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  Google Scholar 

  • Freeman JL, Bañuelos GS (2011) Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments. Environ Sci Technol 45:9703–9710

    Article  Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, Pilon-Smits EAH (2006) Spatial imaging, speciation and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  Google Scholar 

  • Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EAH (2009) Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am J Bot 96:1075–1085

    Article  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SF, Marcus MA, McGrath SP, Van Hoewyk D, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525

    Article  Google Scholar 

  • Galeas ML, Klamper EM, Bennett L, Freeman JL, Kondratieff BC, Quinn CF, Pilon-Smits EAH (2008) Selenium hyperaccumulation reduces plant arthropod loads in the field. New Phytol 177:715–772

    Article  Google Scholar 

  • Global Panel (2015) Biofortification: An agricultural investment for nutrition. Policy brief No. 1. London, UK: Global Panel on Agriculture and Food Systems for Nutrition

    Google Scholar 

  • Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125:164–167

    Article  Google Scholar 

  • Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662

    Article  Google Scholar 

  • Hesketh J (2008) Nutrigenomics and selenium: gene expression patterns, physiological targets, and genetics. Annu Rev Nutr 28:157–177

    Article  Google Scholar 

  • Kápolna E, Hillestrøm PR, Laursen KH, Husted S, Larsen EH (2009) Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem 115:1357–1363

    Article  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang CY, Tagmount A, de Souza M, Bernhard Neuhierl B, Böck A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42

    Article  Google Scholar 

  • Malagoli M, Schiavon M, Dall’Acqua S, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:1–5

    Article  Google Scholar 

  • Martens SN, Boyd RS (2002) The defensive role of Ni hyperaccumulation by plants: a field experiment. Am J Bot 89:998–1003

    Article  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methylmethionine––dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    Article  Google Scholar 

  • Palomino M, Kennedy PG, Simms EL (2007) Nickel hyperaccumulation as an anti-herbivore trait: considering the role of tolerance to damage. Plant Soil 293:189–195

    Article  Google Scholar 

  • Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang Y (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249:157–165

    Article  Google Scholar 

  • Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  Google Scholar 

  • Quinn CF, Prins CN, Freeman JL, Gross AM, Hantzis LJ, Reynolds RJ, Yang SI, Covey PA, Bañuelos GS, Pickering IJ, Fakra SC, Marcus MA, Arathi HS, Pilon-Smits EA (2011) Selenium accumulation in flowers and its effects on pollination. New Phytol 193(3):727–737

    Article  Google Scholar 

  • Retana J, Parker DR, Amrhein C, Page AL (1993) Growth and trace element concentrations of five plant species grown in a highly saline soil. J Environ Qual 22:805–811

    Article  Google Scholar 

  • Ros GH, van Rotterdam AMD, Bussink DW, Bindraban PS (2016) Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil 404:99–112

    Article  Google Scholar 

  • Schiavon M, Pilon M, Malagoli M, Pilon-Smits EAH (2015) Exploring the importance of sulphate transporters and ATP sulphurylases for selenium hyperaccumulationa comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Front Plant Sci 6:1–13

    Article  Google Scholar 

  • Shao S, Deng G, Mi X, Long S, Zhang J, Tang J (2014) Accumulation and speciation of selenium in Cardamine sp. in Yutangba Se mining field, Enshi, China. Chin J Geochem 33:357–364

    Article  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  Google Scholar 

  • Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J 59:110–122

    Article  Google Scholar 

  • Statwick J, Majestic BJ, Sher AA (2016) Characterization and benefits of selenium uptake by an Astragalus hyperaccumulator and a non-accumulator. Plant Soil 404:345–359

    Article  Google Scholar 

  • Sura-de Jong M, Reynolds RJB, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T, Dolinova I, Strejcek M, Cochran AT, Lovecka P, Pilon-Smits EAH (2013) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6(113):1–17

    Google Scholar 

  • Temmerman LD, Waegeneers N, Thiry C, Laing GD, Tack F, Ruttens A (2014) Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Sci Total Environ 468–469:77–82

    Article  Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  Google Scholar 

  • Tong X, Yuan L, Luo L, Yin X (2014) Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanensis. Sci World J 2014:1–8

    Google Scholar 

  • Valdez-Barillas JR, Quinn CF, Freeman JL, Lindblom SD, Fakra SC, Marcus MA, Gilligan TM, Alford ER, Wangeline AL, Pilon-Smits EAH (2012) Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners. Plant Physiol 159:1834–1844

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Qiu R, Mulligan DR (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  Google Scholar 

  • Wangeline A, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EAH (2011) Characterization of rhizosphere fungi from selenium hyperaccumulator and non hyperaccumulator plants along the eastern rocky mountain front range. Am J Bot 98:1139–1147

    Article  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot 100:111–118

    Article  Google Scholar 

  • Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits EAH, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Forum Nutr 7:4199–4239

    Google Scholar 

  • Wu Z, Bañuelos GS, Lin Z-Q, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:1–8

    Google Scholar 

  • Yuan L, Zhu Y, Lin Z-Q, Bañuelos G, Li W, Yin X (2013) A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS One 8(6):e65615

    Article  Google Scholar 

  • Zhu J, Zheng B (2001) Distribution of selenium in a mini-landscape of Yutangba, Enshi, Hubei province, China. Appl Geochem 16:1333–1344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Clemencia Zambrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zambrano, M.C., Yuan, L., Yin, X., Bañuelos, G. (2018). Element Case Studies: Selenium. In: Van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-61899-9_14

Download citation

Publish with us

Policies and ethics