Skip to main content

Element Case Studies: Cobalt and Copper

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Cobalt is economically considered a critical metal for a variety of technologies. Globally, the most important Co ore deposits occur in the Katangan Copperbelt (Democratic Republic of Congo) where a richness of Cu-Co-tolerant and accumulator plants have developed naturally. Cobalt mining there has resulted in the dissemination of large quantities of waste in the environment and is a major environmental issue. Reduction of environmental risks and Co dispersion can be performed by phytoremediation and/or agromining, using trace-element-tolerant and putative hyperaccumulator plants that originated from the biodiversity of natural Co and Cu-rich habitats. Accumulation of foliar Co to >300 μg g−1 is exceptionally rare globally, being known principally from the Copperbelt of Central Africa. This chapter highlights advances in our knowledge of Co accumulation in plants, examines potential for use of a Co-accumulator in agromining, and defines perspectives for Co agromining by designing multi-functions and services of agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker AJM, Brooks RR, Pease AJ, Malaisse F (1983) Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaïre. Plant Soil 73:377–385

    Article  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  Google Scholar 

  • Banza CLN, Nawrot TS, Haufroid V, Decrée S, De Putter T, Smolders E, Kabyla BI, Luboya ON, Ilunga AN, Mutombo AM, Nemery B (2009) High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ Res 109:745–752

    Article  Google Scholar 

  • Boisson S, Le Stradic S, Collignon J, Séleck M, Malaisse F, Shutcha MN, Faucon MP, Mahy G (2015) Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South DR Congo. Environ Sci Pollut Res 14:13693–13705

    Google Scholar 

  • Brooks RR, Reeves RD, Morrison RS, Malaisse F (1980) Hyperaccumulation of copper and cobalt—a review. Bull Soc R Bot Belg 113:166–172

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  Google Scholar 

  • Cheyns K, Banza Lubaba Nkulu C, Ngombe LK, Asosa JN, Haufroid V, De Putter T, Nawrot T, Kimpanga CM, Numbi OL, Ilunga BK, Nemery B, Smolders E (2014) Pathways of human exposure to cobalt in Katanga, a mining area of the D.R. Congo. Sci Total Environ 490:313–321

    Article  Google Scholar 

  • Collins RN, Kinsela AS (2011) Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339:499–512

    Article  Google Scholar 

  • Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, Oxford, 622 pp

    Google Scholar 

  • Decrée S, Pourret O, Baele J-M (2015) Rare earth element fractionation in heterogenite (CoOOH): implication for cobalt oxidized ore in the Katanga Copperbelt (Democratic Republic of Congo). J Geochem Explor 159:290–301

    Article  Google Scholar 

  • Dupin L, Nkono C, Burlet C, Muhashi F, Vanbrabant Y (2013) Land cover fragmentation using multi-temporal remote sensing on major mine sites in southern Katanga (Democratic Republic of Congo). Adv Remote Sens 2:127–139

    Article  Google Scholar 

  • Egoh BN, Reyers B, Rouget M, Richardson DM (2011) Identifying priority areas for ecosystem service management in South African grasslands. J Environ Manag 92:1642–1650

    Article  Google Scholar 

  • Faucon M-P, Houben D, Lambers H (2017) Plant functional traits: soil and ecosystem services. Trends Plant Sci 20:385–394

    Article  Google Scholar 

  • Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  Google Scholar 

  • Faucon M-P, Colinet G, Mahy G, Luhembwe MN, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212

    Article  Google Scholar 

  • Faucon M-P, Parmentier I, Colinet G, Mahy G, Ngongo Luhembwe M, Meerts P (2011) May rare metallophytes benefit from disturbed soils following mining activity? The case of the Crepidorhopalon tenuis in Katanga (D. R. Congo). Restor Ecol 19:333–343

    Article  Google Scholar 

  • Faucon M-P, Tshilong BM, Van Rossum F, Meerts P, Decocq G, Mahy G (2012) Ecology and hybridization potential of two sympatric metallophytes, the narrow endemic Crepidorhopalon perennis (Linderniaceae) and its more widespread congener C. tenuis. Biotropica 44:454–462

    Article  Google Scholar 

  • Faucon M-P, Houben D, Reynoird J-P, Dulaurent-Mercadal AM, Armand R, Lambers H (2015) Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. Adv Agron 134:51–79

    Article  Google Scholar 

  • Faucon M-P, Le Stradic S, Boisson S, wa Ilunga EI, Séleck M, Lange B, Guillaume D, Shutcha MN, Pourret O, Meerts P, Mahy G (2016) Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems. Plant Soil 403:153–165

    Article  Google Scholar 

  • Garnier E, Navas ML, Grigulis K (2016) Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press, 256 pp

    Google Scholar 

  • Gunn G (2014) Critical Metals Handbook. Wiley, USA, 454 pp

    Google Scholar 

  • Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29:189–217

    Article  Google Scholar 

  • Homer FA, Morrison RS, Brooks RR, Clemens J, Reeves RD (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138:195–205

    Article  Google Scholar 

  • Ilunga wa Ilunga E, Mahy G, Piqueray J, Séleck M, Shutcha MN, Meerts P, Faucon M-P (2015) Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: a case study in copper vegetation of Katanga, DRC. Ecol Eng 82:214–221

    Article  Google Scholar 

  • Lange B (2016) Tolérance et accumulation du cuivre et du cobalt—implication pour la phytoremédiation des sols contaminés. Thèse de doctorat, Université Libre de Bruxelles, Université Picardie Jules Verne, France, 160 pp

    Google Scholar 

  • Lange B, Faucon MP, Meerts P, Shutcha M, Mahy G, Pourret O (2014) Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil 379:275–287

    Article  Google Scholar 

  • Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon MP (2017) Copper and cobalt accumulation in plants: a critical assessment of the current status of knowledge. New Phytol 213(2):537–551. doi:10.1111/nph.14175

    Article  Google Scholar 

  • Leteinturier B (2002) Evaluation du potentiel phytocénotique des gisements cuprifères d’Afrique centro-australe en vue de la phytoremédiation de sites pollués par l’activité minière PhD Thesis, Université de Liège - Gembloux Agro-Bio Tech, Faculté des Sciences Agronomiques de Gembloux, Belgium, 361 pp

    Google Scholar 

  • Li L, Tilman D, Lambers H, Zhang FS (2014) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203:63–69

    Article  Google Scholar 

  • Lynch J-P (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  Google Scholar 

  • Malaisse F, Schaijes M, D’Outreligne C (2016) Copper-cobalt flora of upper Katanga and Copperbelt. Field guide. Presses Agronomiques de Gembloux, Gembloux, Belgium, 422 pp

    Google Scholar 

  • Malik M, Chaney RL, Brewer EP, Li YM, Angle JS (2000) Phytoextraction of soil cobalt using hyperaccumulator plants. Int J Phytoremediation 2:319–329

    Article  Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz P, Aronson M, Merriam GR (1981) The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba province, Zaïre. Phytochemistry 20:455–458

    Article  Google Scholar 

  • Mudd GM, Weng Z, Jowitt SM, Turnbull ID, Graedel TE (2013) Quantifying the recoverable resources of by-product metals—the case of cobalt. Ore Geol Rev 55:87–98

    Article  Google Scholar 

  • Pourret O, Faucon M-P (2016) Cobalt. In: White MW (ed) Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the earth. Springer, doi: 10.1007/978-3-319-39193-9_271-1

  • Pourret O, Lange B, Bonhoure J, Colinet G, Decrée S, Mahy G, Séleck M, Shutcha M, Faucon M-P (2016) Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl Geochem 64:43–55

    Article  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 193–221

    Google Scholar 

  • Slack JF, Kimball BE, Shedd KB (2017) Cobalt. In: Schulz KJ, Bradley DC, DeYoung JH, Seal RR II (eds) Critical Mineral Resources of the United States—economic and environmental geology and prospects for future supply. US Geological Survey Professional Paper 1802, pp F1–F39

    Google Scholar 

  • Squadrone S, Burioli E, Monaco G, Koya MK, Prearo M, Gennero S, Dominici A, Abete MC (2016) Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (DR Congo). Sci Total Environ 568(15):679–684

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Qiu R, Mulligan DR (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel-Pierre Faucon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faucon, MP., Pourret, O., Lange, B. (2018). Element Case Studies: Cobalt and Copper. In: Van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-61899-9_13

Download citation

Publish with us

Policies and ethics