Skip to main content

Classical BMS\(_3\) Symmetry

  • Chapter
  • First Online:
BMS Particles in Three Dimensions

Part of the book series: Springer Theses ((Springer Theses))

  • 482 Accesses

Abstract

The Bondi–Metzner–Sachs (BMS) group is an infinite-dimensional symmetry group of asymptotically flat gravity at null infinity, that extends Poincaré symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are cheating in (9.8), since for now there is no way to distinguish \(X'''(\varphi )\) from \(-X'(\varphi )\); the justification for this combination of derivatives will be provided by asymptotic symmetries.

  2. 2.

    The prefix “super” has nothing to do with supersymmetry, but stresses the fact that special-relativistic quantities are extended in an infinite-dimensional way.

  3. 3.

    Indeed, changing the normalization of p would also change the value of the central charge that ensures that the bracket \(\{{\mathcal J},{\mathcal P}\}\) takes the canonical form in Eq. (9.37).

  4. 4.

    In case of identical notations, the subscript indicates which group we are referring to.

  5. 5.

    As in Chap. 6 we describe diffeomorphisms of the circle by their lifts belonging to the universal cover \(\widetilde{\text {Diff}}{}^+(S^1)\), which we abusively denote simply as \(\text {Diff}(S^1)\).

References

  1. H. Bondi, Gravitational waves in general relativity. Nature 186(4724), 535–535 (1960)

    Article  ADS  MATH  Google Scholar 

  2. H. Bondi, M.G.J. van der Burg, A.W.K. Metzner, Gravitational waves in general relativity. 7. waves from axisymmetric isolated systems. Proc. R. Soc. Lond. A 269, 21–52 (1962)

    Article  ADS  MATH  Google Scholar 

  3. R. Sachs, Asymptotic symmetries in gravitational theory. Phys. Rev. 128, 2851–2864 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R.K. Sachs, Gravitational waves in general relativity. 8. waves in asymptotically flat space-times. Proc. R. Soc. Lond. A 270, 103–126 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Ashtekar, J. Bicak, B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity. Phys. Rev. D 55, 669–686 (1997), arXiv:gr-qc/9608042

  6. G. Barnich, B. Oblak, Holographic positive energy theorems in three-dimensional gravity. Class. Quant. Grav. 31, 152001 (2014), arXiv:1403.3835

  7. G. Barnich, B. Oblak, Notes on the BMS group in three dimensions: I. induced representations. JHEP 06, 129 (2014), arXiv:1403.5803

  8. G. Barnich, B. Oblak, Notes on the BMS group in three dimensions: II. coadjoint representation. JHEP 03, 033 (2015), arXiv:1502.00010

  9. G. Barnich, G. Compère, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions. Class. Quant. Grav. 24, F15–F23 (2007), arXiv:gr-qc/0610130

  10. G. Barnich, C. Troessaert, Aspects of the BMS/CFT correspondence. JHEP 05, 062 (2010), arXiv:1001.1541

  11. B. Oblak, From the Lorentz group to the celestial sphere. Notes de la Septième BSSM, U.L.B (2015), arXiv:1508.00920

  12. S. Deser, R. Jackiw, G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat space. Ann. Phys. 152, 220 (1984)

    Article  ADS  Google Scholar 

  13. S. Deser, R. Jackiw, String sources in (2\(+\)1)-dimensional gravity. Ann. Phys. 192, 352 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. G. Barnich, F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 633, 3–82 (2002), arXiv:hep-th/0111246

  15. G. Barnich, A note on gauge systems from the point of view of Lie algebroids. AIP Conf. Proc. 1307, 7–18 (2010), arXiv:1010.0899

  16. D. Christodoulou, S. Klainerman, The global nonlinear stability of the Minkowski space. Séminaire Équations aux dérivées partielles (Polytechnique), pp. 1–29 (1993)

    Google Scholar 

  17. A. Strominger, Asymptotic symmetries of yang-mills theory. JHEP 07, 151 (2014), arXiv:1308.0589

  18. A. Strominger, On BMS invariance of gravitational scattering. JHEP 07, 152 (2014), arXiv:1312.2229

  19. T. He, V. Lysov, P. Mitra, A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem. JHEP 05, 151 (2015), arXiv:1401.7026

  20. F. Cachazo, A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091

  21. D. Kapec, V. Lysov, S. Pasterski, A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity \( \cal{S}\)-matrix. JHEP 08, 058 (2014), arXiv:1406.3312

  22. T. He, P. Mitra, A.P. Porfyriadis, A. Strominger, New symmetries of massless QED. JHEP 10, 112 (2014), arXiv:1407.3789

  23. V. Lysov, S. Pasterski, A. Strominger, Low’s subleading soft theorem as a symmetry of QED. Phys. Rev. Lett. 113(11), 111601 (2014), arXiv:1407.3814

  24. A. Strominger, A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems. JHEP 01, 086 (2016), arXiv:1411.5745

  25. D. Kapec, V. Lysov, A. Strominger, Asymptotic Symmetries of Massless QED in Even Dimensions, arXiv:1412.2763

  26. S. Pasterski, A. Strominger, A. Zhiboedov, New Gravitational Memories, arXiv:1502.06120

  27. D. Kapec, V. Lysov, S. Pasterski, A. Strominger, Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem, arXiv:1502.07644

  28. S. Pasterski, Asymptotic Symmetries and Electromagnetic Memory, arXiv:1505.00716

  29. T. He, P. Mitra, A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, arXiv:1503.02663

  30. D. Kapec, M. Pate, A. Strominger, New Symmetries of QED, arXiv:1506.02906

  31. A. Strominger, Magnetic corrections to the soft photon theorem. Phys. Rev. Lett. 116(3), 031602 (2016), arXiv:1509.00543

  32. T.T. Dumitrescu, T. He, P. Mitra, A. Strominger, Infinite-Dimensional Fermionic Symmetry in Supersymmetric Gauge Theories, arXiv:1511.07429

  33. M. Henneaux, Asymptotically flat spaces in D spacetime dimensions: a review of the Hamiltonian approach, in Talk given at the workshop Flat Holography at the Simons Center for Geometry and Physics, April (2016)

    Google Scholar 

  34. G. Barnich, H.A. González, Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity. JHEP 05, 016 (2013), arXiv:1303.1075

  35. J. Hartong, Holographic Reconstruction of 3D Flat Space-Time, arXiv:1511.01387

  36. C. Troessaert, Enhanced asymptotic symmetry algebra of \(AdS\) \(_{3}\). JHEP 08, 044 (2013), arXiv:1303.3296

  37. A. Bagchi, S. Detournay, D. Grumiller, Flat-space Chiral gravity. Phys. Rev. Lett. 109, 151301 (2012), arXiv:1208.1658

  38. D. Grumiller, W. Merbis, Free energy of topologically massive gravity and flat space holography, in 2nd Karl Schwarzschild Meeting on Gravitational Physics (KSM 2015) Frankfurt am Main, Germany, 20–24 July 2015 (2015), arXiv:1509.08505

  39. H.A. González, M. Pino, Asymptotically flat spacetimes in 3D bigravity. Phys. Rev. D 86, 084045 (2012), arXiv:1207.0882

  40. H.R. Afshar, Flat/AdS boundary conditions in three dimensional conformal gravity. JHEP 10, 027 (2013), arXiv:1307.4855

  41. G. Barnich, C. Troessaert, D. Tempo, R. Troncoso, Asymptotically locally flat spacetimes and dynamical nonspherically-symmetric black holes in three dimensions. Phys. Rev. D 93(8), 084001 (2016), arXiv:1512.05410

  42. C. Troessaert, D. Tempo, R. Troncoso, Asymptotically flat black holes and gravitational waves in three-dimensional massive gravity, in 8th Aegean Summer School: Gravitational Waves: From Theory to Observations Rethymno, Crete, Greece, 29 June–04 July 2015 (2015), arXiv:1512.09046

  43. L. Cornalba, M.S. Costa, A new cosmological scenario in string theory. Phys. Rev. D 66, 066001 (2002), arXiv:hep-th/0203031

  44. L. Cornalba, M.S. Costa, Time dependent orbifolds and string cosmology. Fortsch. Phys. 52, 145–199 (2004), arXiv:hep-th/0310099

  45. S. Detournay, T. Hartman, D.M. Hofman, Warped conformal field theory. Phys. Rev. D 86, 124018 (2012), arXiv:1210.0539

  46. P.J. McCarthy, The Bondi–Metzner–Sachs group in the nuclear topology. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 343(1635), 489–523 (1975), http://rspa.royalsocietypublishing.org/content/343/1635/489.full.pdf

  47. A. Ashtekar, M. Streubel, Symplectic geometry of radiative modes and conserved quantities at null infinity. Proc. R. Soc. Lond. A 376, 585–607 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. O.M. Moreschi, Supercenter of mass system at future null infinity. Class. Quant. Grav. 5, 423–435 (1988)

    Article  ADS  MATH  Google Scholar 

  49. B.R. Iyer, A. Kembhavi, J.V. Narlikar, C.V. Vishveshwara, (eds.), Highlights in gravitation and cosmology, in Proceedings, International Conference, Goa, India, 14–19 December 1987 (1988)

    Google Scholar 

  50. A.D. Helfer, A phase space for gravitational radiation. Commun. Math. Phys. 170(3), 483–502 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. E.E. Flanagan, D.A. Nichols, Conserved charges of the extended Bondi–Metzner–Sachs algebra, arXiv:1510.03386

  52. J. Garecki, Canonical angular supermomentum tensors in general relativity. J. Math. Phys. 40(8), 4035–4055 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J. Garecki, Superenergy and angular supermomentum tensors in general relativity. Rep. Math. Phys. 44(1), 95–100 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. G. Barnich, A. Gomberoff, H.A. González, A 2D field theory equivalent to 3D gravity with no cosmological constant. Springer Proc. Math. Stat. 60, 135–138 (2014), arXiv:1303.3568

  55. G. Barnich, A. Gomberoff, H.A. González, Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory. Phys. Rev. D 87(12), 124032 (2013), arXiv:1210.0731

  56. H.A. González, M. Pino, Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields. JHEP 05, 127 (2014), arXiv:1403.4898

  57. G. Barnich, L. Donnay, J. Matulich, R. Troncoso, Asymptotic symmetries and dynamics of three-dimensional flat supergravity. JHEP 08, 071 (2014), arXiv:1407.4275

  58. G. Barnich, L. Donnay, J. Matulich, R. Troncoso, Super-BMS\(_{3}\) invariant boundary theory from three-dimensional flat supergravity, arXiv:1510.08824

  59. G. Barnich, A. Gomberoff, H.A. González, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes. Phys. Rev. D 86, 024020 (2012), arXiv:1204.3288

  60. E. Inönü, E.P. Wigner, On the contraction of groups and their representations. Proc. Nat. Acad. Sci. 39, 510–524 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. L. Susskind, Holography in the flat space limit, arXiv:hep-th/9901079 (AIP Conf. Proc. 493, 98 (1999))

  62. J. Polchinski, S matrices from AdS space-time, arXiv:hep-th/9901076

  63. M. Gary, S.B. Giddings, J. Penedones, Local bulk S-matrix elements and CFT singularities. Phys. Rev. D 80, 085005 (2009), arXiv:0903.4437

  64. R.N. Caldeira Costa, Aspects of the zero \(\Lambda \) limit in the AdS/CFT correspondence. Phys. Rev. D 90(10), 104018 (2014), arXiv:1311.7339

  65. C. Krishnan, A. Raju, S. Roy, A Grassmann path from \(AdS_3\) to flat space. JHEP 03, 036 (2014), arXiv:1312.2941

  66. A. Bagchi, R. Gopakumar, I. Mandal, A. Miwa, GCA in 2D. JHEP 08, 004 (2010), arXiv:0912.1090

  67. A. Bagchi, The BMS/GCA correspondence, arXiv:1006.3354

  68. A. Bagchi, I. Mandal, Supersymmetric extension of galilean conformal algebras. Phys. Rev. D 80, 086011 (2009), arXiv:0905.0580

  69. A. Bagchi, I. Mandal, On representations and correlation functions of Galilean conformal algebras. Phys. Lett. D 675, 393–397 (2009), arXiv:0903.4524

  70. A. Bagchi, R. Gopakumar, Galilean conformal algebras and AdS/CFT. JHEP 07, 037 (2009), arXiv:0902.1385

  71. A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories. Phys. Rev. Lett. 105, 171601 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  72. R. Fareghbal, A. Naseh, Flat-space energy-momentum tensor from BMS/GCA correspondence. JHEP 03, 005 (2014), arXiv:1312.2109

  73. N. Banerjee, D.P. Jatkar, S. Mukhi, T. Neogi, Free-Field Realisations of the BMS\(_3\) Algebra and its Extensions, arXiv:1512.06240

  74. R. Fareghbal, Y. Izadi, Flat-Space Holography and Stress Tensor of Kerr Black Hole, arXiv:1603.04137

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blagoje Oblak .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oblak, B. (2017). Classical BMS\(_3\) Symmetry. In: BMS Particles in Three Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61878-4_9

Download citation

Publish with us

Policies and ethics