Skip to main content

Coadjoint Orbits and Geometric Quantization

  • Chapter
  • First Online:
Book cover BMS Particles in Three Dimensions

Part of the book series: Springer Theses ((Springer Theses))

  • 613 Accesses

Abstract

In the previous chapters we have seen how representation theory leads to geometric objects such as orbits. The purpose of this chapter is to describe the opposite phenomenon: starting from a coadjoint orbit of a group G, we will obtain a representation by quantizing the orbit. This construction will further explain why orbits of momenta classify representations of semi-direct products. In addition it will turn out to be a tool for understanding gravity in parts II and III.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that the differential of a smooth map \({\mathcal F}:{\mathcal M}\rightarrow {\mathcal N}\) at \(p\in {\mathcal M}\) is the map \({\mathcal F}_{*p}:T_p{\mathcal M}\rightarrow T_{{\mathcal F}(p)}{\mathcal N}:\dot{\gamma }(0)\mapsto \frac{d}{dt}\big [{\mathcal F}(\gamma (t))\big ]\big |_{t=0}\), where \(\gamma (t)\) is a path in \({\mathcal M}\) such that \(\gamma (0)=p\).

  2. 2.

    An integral curve of a vector field \(\xi \) on a manifold \({\mathcal M}\) is a path \(\gamma (t)\) on \({\mathcal M}\) such that \(\dot{\gamma }(t)=\xi _{\gamma (t)}\).

  3. 3.

    From now on, real functions on \({\mathcal M}\) are denoted as \({\mathcal F}\), \({\mathcal G}\), \({\mathcal H}\), etc.

  4. 4.

    A derivation of an algebra \({\mathcal A}\) is a linear map \(D:{\mathcal A}\rightarrow {\mathcal A}:a\mapsto D(a)\) that satisfies the Leibniz rule \(D(a\cdot b)=D(a)\cdot b+a\cdot D(b)\).

  5. 5.

    Closedness means \(d\omega =0\), where d is the exterior derivative. Non-degeneracy means that for all \(p\in {\mathcal M}\), any vector \(v\in T_p{\mathcal M}\) such that \(\omega _p(v,w)=0\) for all \(w\in T_p{\mathcal M}\) necessarily vanishes.

  6. 6.

    Recall that the pullback of a tensor field T of rank k on a manifold \({\mathcal N}\) by a map \(\phi :{\mathcal M}\rightarrow {\mathcal N}\) is defined by \((\phi ^*T)_p(v_1,\ldots ,v_k)\equiv T_{\phi (p)}(\phi _{*p}v_1,\ldots ,\phi _{*p}v_k)\) for any \(p\in {\mathcal M}\) and all \(v_1,\ldots ,v_k\in T_p{\mathcal M}\).

  7. 7.

    \({\mathcal F}_{*p}\) is a linear map from \(T_p\mathfrak {g}^*\cong \mathfrak {g}^*\) to \(T_{{\mathcal F}(p)}\mathbb {R}\cong \mathbb {R}\) and therefore belongs to \((\mathfrak {g}^*)^*\cong \mathfrak {g}\).

  8. 8.

    Here self-adjointness means that \(\langle {\mathcal I}(X),Y\rangle =\langle {\mathcal I}(Y),X\rangle \) for any two adjoint vectors XY.

  9. 9.

    Property (5.31) does not contradict the fact that the adjoint and coadjoint representations of \(\mathfrak {g}\) are actual representations, i.e. for example that \(\text {ad}_X\text {ad}_Y-\text {ad}_Y\text {ad}_X=\text {ad}_{[X,Y]}\). Indeed, the vector fields in (5.31) are derivations acting on functions on \({\mathcal M}\), while \(\text {ad}_X\) and \(\text {ad}^*_X\) are generally understood as linear operators acting on \(\mathfrak {g}\) and \(\mathfrak {g}^*\), respectively.

  10. 10.

    The map being “smooth” means that, given any two smooth sections \(\Phi ,\Psi \), the assignment \(q\mapsto (\Phi (q)|\Psi (q))\) is smooth.

  11. 11.

    Here “closed” means “compact without boundary”.

  12. 12.

    We denote by c the speed of light in the vacuum.

  13. 13.

    Here the words “semi-direct product” refer to a group (4.1) with an Abelian vector group A.

  14. 14.

    The sequence “group \(\leadsto \) adjoint \(\leadsto \) coadjoint” will be ubiquitous in this thesis.

References

  1. R. Abraham, J. Marsden, Foundations of Mechanics (AMS Chelsea publishing/American Mathematical Society, 1978)

    Google Scholar 

  2. B. Khesin, R. Wendt, The Geometry of Infinite-Dimensional Groups, A series of modern surveys in mathematics (Springer, Berlin, 2008)

    MATH  Google Scholar 

  3. N. Woodhouse, Geometric Quantization, Oxford mathematical monographs (Clarendon Press, Oxford, 1997)

    MATH  Google Scholar 

  4. A.A. Kirillov, Lectures on the Orbit Method, Graduate studies in mathematics (American Mathematical Society, Providence, 2004)

    Book  MATH  Google Scholar 

  5. S. De Buyl, S. Detournay, Y. Voglaire, Symplectic Geometry and Geometric Quantization, http://www.ulb.ac.be/sciences/ptm/pmif/Rencontres/geosymplgeoquant4.pdf

  6. V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate texts in mathematics (Springer, New York, 1997)

    Google Scholar 

  7. B. Kostant, Quantization and unitary representations, Lectures in Modern Analysis and Applications III (Springer, Berlin, 1970), pp. 87–208

    Google Scholar 

  8. A. Alekseev, L. Faddeev, S. Shatashvili, Quantization of symplectic orbits of compact Lie groups by means of the functional integral. J. Geom. Phys. 5(3), 391–406 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Alekseev, S. Shatashvili, Path integral quantization of the coadjoint orbits of the Virasoro group and 2-d gravity. Nucl. Phys. B 323(3), 719–733 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Aratyn, E. Nissimov, S. Pacheva, A.H. Zimerman, Symplectic actions on coadjoint orbits. Phys. Lett. B 240, 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  11. P. Salgado Rebolledo, Symplectic Structure of Constrained Systems: Gribov Ambiguity and Classical Duals for 3D Gravity. Ph.D. thesis, Concepcion U., 2015-10-28

    Google Scholar 

  12. L. Charles, Feynman path integral and Toeplitz quantization. Helv. Phys. Acta 72(5/6), 341–355 (1999)

    MathSciNet  MATH  Google Scholar 

  13. J. Wess, B. Zumino, Consequences of anomalous Ward identities. Phys. Lett. B 37, 95–97 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.P. Novikov, The Hamiltonian formalism and a many valued analog of Morse theory. Usp. Mat. Nauk 37N5(5), 3–49 (1982). [Russ. Math. Surveys 37(5), 1 (1982)]

    Google Scholar 

  15. E. Witten, Global aspects of current algebra. Nucl. Phys. B 223, 422–432 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Taylor, Virasoro representations on Diff \(S^1/S^1\) coadjoint orbits, arXiv:hep-th/9204091

  17. W. Taylor, Coadjoint orbits and conformal field theory. Ph.D. thesis, UC, Berkeley (1993), arXiv:hep-th/9310040

  18. J.H. Rawnsley, Representations of a semi-direct product by quantization. Math. Proc. Camb. Philos. Soc. 78(9), 345–350 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Barnich, B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation. JHEP 03, 033 (2015), arXiv:1502.00010

  20. P. Baguis, Semidirect products and the Pukanszky condition. J. Geom. Phys. 25(3–4), 245–270 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Z. Li, Coadjoint orbits and induced representations. Ph.D. thesis, Massachusetts Institute of Technology (1993)

    Google Scholar 

  22. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, vol. 1 (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  23. S.T. Ali, J.P. Antoine, J.-P. Gazeau, Coherent States, Wavelets and Their Generalizations, vol. 1 (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  24. C. Duval, J. Elhadad, M.J. Gotay, J. Sniatycki, G.M. Tuynman, Quantization and bosonic BRST theory. Annals Phys. 206, 1 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. R. Cushman, W. van der Kallen, Adjoint and coadjoint orbits of the poincaré group. Acta Applicandae Mathematica 90(1–2), 65–89 (2006)

    Article  MATH  Google Scholar 

  26. V. Hudon, S. Twareque Ali, Coadjoint Orbits of the Poincaré Group in 2+1 Dimensions and their Coherent States (2010), arXiv:1011.6620

  27. R. Cushman, W. van der Kallen, A new interpretation for the mass of a classical relativistic particle. Differ. Geom. Appl. 24(3), 230–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. A.P. Balachandran, G. Marmo, B.S. Skagerstam, A. Stern, Gauge symmetries and fiber bundles: applications to particle dynamics. Lect. Notes Phys. 188, 1–140 (1983)

    Article  ADS  MATH  Google Scholar 

  29. C. Duval, J. Elhadad, Geometric quantization and localization of relativistic spin systems, in Joint Summer Reasearch Conference on Mathematical Aspects of Classical Field Theory Seattle, Washington, July 21–25, 1991 (1991)

    Google Scholar 

  30. J.-M. Souriau, A mechanistic description of elementary particles, Structure of Dynamical Systems (Springer, Berlin, 1997), pp. 173–193

    Google Scholar 

  31. C. Teitelboim, Quantum mechanics of the gravitational field. Phys. Rev. D 25, 3159 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Henneaux, C. Teitelboim, Relativistic quantum mechanics of supersymmetric particles. Annals Phys. 143, 127 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Henneaux, C. Teitelboim, First and second quantized point particles of any spin, in 2nd Meeting on Quantum Mechanics of Fundamental Systems (CECS) Santiago, Chile, December 17–20, 1987 (1987)

    Google Scholar 

  34. A.Yu. Alekseev, S.L. Shatashvili, Propagator for the relativistic spinning particle via functional integral over trajectories. Mod. Phys. Lett. A 3, 1551–1559 (1988)

    Google Scholar 

  35. R.P. Feynman, An operator calculus having applications in quantum electrodynamics. Phys. Rev. 84, 108–128 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. M.J. Strassler, Field theory without Feynman diagrams: one loop effective actions. Nucl. Phys. B 385, 145–184 (1992), arXiv:hep-ph/9205205

  37. M.J. Strassler, The Bern-Kosower rules and their relation to quantum field theory. Ph.D. thesis, Stanford U., Phys. Dept. (1993)

    Google Scholar 

  38. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blagoje Oblak .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oblak, B. (2017). Coadjoint Orbits and Geometric Quantization. In: BMS Particles in Three Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61878-4_5

Download citation

Publish with us

Policies and ethics