Skip to main content

Partition Functions and Characters

  • Chapter
  • First Online:
BMS Particles in Three Dimensions

Part of the book series: Springer Theses ((Springer Theses))

  • 481 Accesses

Abstract

The asymptotic symmetries described in Chap. 9 suggest that the quantization of asymptotically flat gravitational fields in three dimensions provides unitary representations of BMS\(_3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, the field at time \(\tau +\beta \) is rotated by \(\vec \theta \) with respect to the field at time \(\tau \).

  2. 2.

    Note also that the scalar heat kernel coincides with the propagator of a free particle in \(\mathbb {R}^D\), whose expression for \(D=2\) was written in Eq. (5.158).

  3. 3.

    An interesting problem is to understand if these algebras are merely different because of an unfortunate choice of basis, or if they are genuinely distinct in the sense that they are not isomorphic. We will not address this issue here.

  4. 4.

    Eventually these numbers will be exponentials of angular potentials, so they are fugacities associated with the rotation generators \(H_i\).

  5. 5.

    See e.g. [49, p.259].

References

  1. D. Grumiller, M. Riegler, J. Rosseel, Unitarity in three-dimensional flat space higher spin theories. JHEP 07, 015 (2014), arXiv:1403.5297

  2. G. Barnich, H.A. González, A. Maloney, B. Oblak, One-loop partition function of three-dimensional flat gravity. JHEP 04, 178 (2015), arXiv:1502.06185

  3. A. Campoleoni, H.A. González, B. Oblak, M. Riegler, Rotating higher spin partition functions and extended BMS symmetries. JHEP 04, 034 (2016), arXiv:1512.03353

  4. A. Campoleoni, H.A. González, B. Oblak, M. Riegler, BMS modules in three dimensions. Int. J. Mod. Phys. A 31(12), 1650068 (2016), arXiv:1603.03812

  5. S. Giombi, A. Maloney, X. Yin, One-loop partition functions of 3D gravity. JHEP 08, 07 (2008), arXiv:0804.1773

  6. J.R. David, M.R. Gaberdiel, R. Gopakumar, The heat kernel on AdS(3) and its applications. JHEP 04, 125 (2010), arXiv:0911.5085

  7. M.R. Gaberdiel, R. Gopakumar, A. Saha, Quantum \(W\)-symmetry in \(AdS_3\). JHEP 02, 004 (2011), arXiv:1009.6087

  8. D.V. Vassilevich, Heat kernel expansion: User’s manual. Phys. Rept. 388, 279–300 (2003), arXiv:hep-th/0306138

  9. L.P.S. Singh, C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case. Phys. Rev. D 9, 898–909 (1974)

    Article  ADS  Google Scholar 

  10. Yu. M. Zinoviev, On massive high spin particles in AdS, arXiv:hep-th/0108192

  11. C. Fronsdal, Massless fields with integer spin. Phys. Rev. D 18, 3624 (1978)

    Article  ADS  Google Scholar 

  12. R. Rahman, Higher spin theory - Part I. PoS ModaveVIII, 004 (2012), arXiv:1307.3199

  13. G.W. Gibbons, M.J. Perry, C.N. Pope, Partition functions, the Bekenstein bound and temperature inversion in anti-de Sitter space and its conformal boundary. Phys. Rev. D 74, 084009 (2006), arXiv:hep-th/0606186

  14. R. Gopakumar, R.K. Gupta, S. Lal, The heat kernel on \(AdS\). JHEP 11, 010 (2011), arXiv:1103.3627

  15. M. Beccaria, A.A. Tseytlin, On higher spin partition functions. J. Phys. A 48(27), 275401 (2015), arXiv:1503.08143

  16. A. Bagchi, S. Detournay, D. Grumiller, J. Simon, Cosmic evolution from phase transition of three-dimensional flat space. Phys. Rev. Lett. 111(18), 181301 (2013), arXiv:1305.2919

  17. V. Bonzom, B. Dittrich, 3D holography: from discretum to continuum. JHEP 03, 208 (2016), arXiv:1511.05441

  18. F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory. J. Math. Phys. 47, 062303 (2006), arXiv:hep-th/0508031

  19. J. Balog, L. Fehér, L. O’Raifeartaigh, P. Forgacs, A. Wipf, Toda theory and \(W\) algebra from a gauged WZNW point of view. Ann. Phys. 203, 76–136 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. B.A. Khesin, B.Z. Shapiro, Nondegenerate curves on S**2 and orbit classification of the Zamolodchikov algebra. Commun. Math. Phys. 145, 357–362 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Z. Bajnok, D. Nogradi, Geometry of W algebras from the affine Lie algebra point of view. J. Phys. A 34, 4811–4830 (2001), arXiv:hep-th/0012190

  22. M. Henneaux, S.-J. Rey, Nonlinear \(W_{infinity}\) as asymptotic symmetry of three-dimensional higher spin anti-de sitter gravity. JHEP 12, 007 (2010), arXiv:1008.4579

  23. A. Campoleoni, S. Fredenhagen, S. Pfenninger, S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields. JHEP 11, 007 (2010), arXiv:1008.4744

  24. M.R. Gaberdiel, T. Hartman, Symmetries of holographic minimal models. JHEP 05, 031 (2011), arXiv:1101.2910

  25. A. Campoleoni, S. Fredenhagen, S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories. JHEP 09, 113 (2011), arXiv:1107.0290

  26. H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller, J. Rosseel, Spin-3 gravity in three-dimensional flat space. Phys. Rev. Lett. 111(12), 121603 (2013), arXiv:1307.4768

  27. H.A. González, J. Matulich, M. Pino, R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity. JHEP 09, 016 (2013), arXiv:1307.5651

  28. A. Campoleoni, Higher spins in D = 2 + 1. Subnucl. Ser. 49, 385–396 (2013), arXiv:1110.5841

  29. A. Bagchi, R. Gopakumar, I. Mandal, A. Miwa, GCA in 2d. JHEP 08, 004 (2010), arXiv:0912.1090

  30. L.P.S. Singh, C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case. Phys. Rev. D 9, 910–920 (1974)

    Article  ADS  Google Scholar 

  31. R.R. Metsaev, Gauge invariant formulation of massive totally symmetric fermionic fields in (A)dS space. Phys. Lett. B 643, 205–212 (2006), arXiv:hep-th/0609029

  32. J. Fang, C. Fronsdal, Massless fields with half integral spin. Phys. Rev. D 18, 3630 (1978)

    Article  ADS  Google Scholar 

  33. T. Creutzig, Y. Hikida, P.B. Ronne, Higher spin AdS\(_3\) supergravity and its dual CFT. JHEP 02, 109 (2012), arXiv:1111.2139

  34. G. Barnich, L. Donnay, J. Matulich, R. Troncoso, Asymptotic symmetries and dynamics of three-dimensional flat supergravity. JHEP 08, 071 (2014), arXiv:1407.4275

  35. G. Barnich, L. Donnay, J. Matulich, R. Troncoso, Super-BMS\(_{3}\) invariant boundary theory from three-dimensional flat supergravity, arXiv:1510.08824

  36. O. Fuentealba, J. Matulich, R. Troncoso, Extension of the Poincaré group with half-integer spin generators: hypergravity and beyond. JHEP 09, 003 (2015), arXiv:1505.06173

  37. O. Fuentealba, J. Matulich, R. Troncoso, Asymptotically flat structure of hypergravity in three spacetime dimensions. JHEP 10, 009 (2015), arXiv:1508.04663

  38. I. Mandal, Supersymmetric extension of GCA in 2d. JHEP 11, 018 (2010), arXiv:1003.0209

  39. P. Deligne, I. Study, Quantum Fields and Strings: A Course for Mathematicians, vol. 2 (American Mathematical Society, Providence, 1999)

    Google Scholar 

  40. C. Carmeli, G. Cassinelli, A. Toigo, V.S. Varadarajan, Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles. Commun. Math. Phys. 263, 217–258 (2006), arXiv:hep-th/0501061 [Erratum: Commun. Math. Phys. 307, 565 (2011)]

  41. C. Carmeli, Super Lie Groups: Structure and Representations. Ph.D. thesis, 2006, http://www.ge.infn.it/~carmeli/publication/publication.html

  42. J. Dai, D. Pickrell, The orbit method and the Virasoro extension of Diff\(^+\)(\(S^1\)). I. Orbital integrals. J. Geom. Phys. 44, 623–653 (1, 2003)

    Google Scholar 

  43. L. Guieu, C. Roger, L’algèbre et le groupe de Virasoro (Publications du CRM, Université de Montréal, 2007)

    MATH  Google Scholar 

  44. M. Bañados, K. Bautier, O. Coussaert, M. Henneaux, M. Ortiz, Anti-de Sitter/CFT correspondence in three-dimensional supergravity. Phys. Rev. D 58, 085020 (1998), arXiv:hep-th/9805165

  45. M. Henneaux, L. Maoz, A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity. Ann. Phys. 282, 31–66 (2000), arXiv:hep-th/9910013

  46. O. Coussaert, M. Henneaux, Supersymmetry of the (2+1) black holes. Phys. Rev. Lett. 72, 183–186 (1994), arXiv:hep-th/9310194

  47. I. MacDonald, Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs (Oxford Science Publications, New York, 1995)

    Google Scholar 

  48. W. Fulton, J. Harris, Representation Theory: A First Course. Graduate Texts in Mathematics (Springer, New York, 1991)

    Google Scholar 

  49. D.E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups (American Mathematical Society, Providence, 1950)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blagoje Oblak .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oblak, B. (2017). Partition Functions and Characters. In: BMS Particles in Three Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61878-4_11

Download citation

Publish with us

Policies and ethics