Skip to main content

Physical Implications

  • Chapter
  • First Online:
Condensed Matter Applications of AdS/CFT

Part of the book series: Springer Theses ((Springer Theses))

  • 710 Accesses

Abstract

Having described in Chap. 8 the technical details to obtain a holographic effective field theory which takes into account momentum dissipation effects, we are now ready to discuss the physical implication of the technical result previously obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See for instance [12] for the analysis of the scaling properties of the pure massive gravity model.

  2. 2.

    The values of external magnetic fields implemented in a typical experimental set up can generally be considered small with respect to the intrinsic scales of the materials.

  3. 3.

    We have chosen to express the scalings in temperature as a function of the dimensionless quantity \(T / \sqrt{\rho }\), considering the system at fixed charge density.

  4. 4.

    Notice that this is exactly the same number of quantities which were needed to be fixed in the approach of [14].

References

  1. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005)

    Google Scholar 

  2. L.P. Pitaevskii, E.M. Lifshitz, in Physical Kinetics, vol. 10 (Elsevier Science, 2012)

    Google Scholar 

  3. N. Iqbal, H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev. D 79, 025023 (2009)

    Google Scholar 

  4. S. Cremonini, The shear viscosity to entropy ratio: a status report. Mod. Phys. Lett. B 25, 1867–1888 (2011)

    Google Scholar 

  5. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A 45, 473001 (2012)

    Google Scholar 

  6. A. Adams, L.D. Carr, T. Schfer, P. Steinberg, J.E. Thomas, Strongly correlated quantum fluids, Ultracold quantum gases, quantum Chromodynamic plasmas, and Holographic duality. New J. Phys. 14, 115009 (2012)

    Google Scholar 

  7. J.D. Rameau, T.J. Reber, H.-B. Yang, S. Akhanjee, G.D. Gu, P.D. Johnson, S. Campbell, Nearly perfect fluidity in a high-temperature superconductor. Phys. Rev. B 90, 134509 (2014)

    Article  ADS  Google Scholar 

  8. S.A. Hartnoll, Theory of universal incoherent metallic transport. Nat. Phys. 11, 54 (2015)

    Google Scholar 

  9. P. Kovtun, Fluctuation bounds on charge and heat diffusion. J. Phys. A 48(26), 265002 (2015)

    Google Scholar 

  10. M. Blake, A. Donos, Quantum critical transport and the hall angle. Phys. Rev. Lett. 114(2), 021601 (2015)

    Google Scholar 

  11. M. Blake, D. Tong, Universal resistivity from Holographic massive gravity. Phys. Rev. D 88(10), 106004 (2013)

    Google Scholar 

  12. A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation. JHEP 09, 160 (2014)

    Google Scholar 

  13. N.E. Hussey, Phenomenology of the normal state in-plane transport properties of high- t c cuprates. J. Phys. Condens. Matter 20(12), 123201 (2008)

    Google Scholar 

  14. S.A. Hartnoll, A. Karch, Scaling theory of the cuprate strange metals. Phys. Rev. B 91(15), 155126 (2015)

    Google Scholar 

  15. A. Karch, Conductivities for Hyperscaling violating geometries. JHEP 06, 140 (2014)

    Google Scholar 

  16. S.A. Hartnoll, P.K. Kovtun, M. Muller, S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007)

    Google Scholar 

  17. S. Hod, Radiative tail of realistic rotating gravitational collapse. Phys. Rev. Lett. 84, 10–13 (2000)

    Google Scholar 

  18. M. Matusiak, K. Rogacki, B.W. Veal, Enhancement of the hall-lorenz number in optimally doped yba\(_{2}\) cu \(_{3}\) o \(_{7-d}\). EPL 88(4), 47005 (2009)

    Google Scholar 

  19. D.V. Khveshchenko, Viable phenomenologies of the normal state of cuprates. Europhys. Lett. 111, 1700 (2015)

    Article  Google Scholar 

  20. J. Loram, Evidence on the pseudogap and condensate from the electronic specific heat. J. Phys. Chem. Solids 62, 59–64 (2001)

    Article  ADS  Google Scholar 

  21. J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, J.M. Wade, Electronic specific heat of \(yba2cu3o6+x\) from 1.8 to 300 k. J. Supercond. 7(1), 243–249 (1994)

    Google Scholar 

  22. J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, J.M. Wade, Electronic specific heat of yba2cu3o6+x from 1.8 to 300 k. J. Supercond. 7(1), 243–249 (1994)

    Article  ADS  Google Scholar 

  23. R.A. Davison, K. Schalm, J. Zaanen, Holographic duality and the resistivity of strange metals. Phys. Rev. B 89(24), 245116 (2014)

    Google Scholar 

  24. S.D. Obertelli, J.R. Cooper, J.L. Tallon, Systematics in the thermoelectric power of high-\({\mathit{t}}_{\mathit{c}}\) oxides. Phys. Rev. B 46, 14928–14931 (1992)

    Article  ADS  Google Scholar 

  25. J.S. Kim, B.H. Kim, D.C. Kim, Y.W. Park, Thermoelectric power of La2-xSrxCuO4 at high temperatures. Ann. der Phys. 516, 43–47 (2004)

    Article  ADS  Google Scholar 

  26. J.L. Cohn, S.A. Wolf, V. Selvamanickam, K. Salama, Thermoelectric power of \({\rm yba\rm _{2}{\rm cu}\rm _{3}{\rm o}\rm _{7\rm -}\rm \delta }\): Phonon drag and multiband conduction. Phys. Rev. Lett. 66, 1098–1101 (1991)

    Google Scholar 

  27. S.F. Shandarin, A.L. Melott, K. McDavitt, J.L. Pauls, J. Tinker, The shape of the first collapsed objects. Phys. Rev. Lett. 75, 7–10 (1995)

    Article  ADS  Google Scholar 

  28. Y. Wang, L. Li, N.P. Ong, Nernst effect in high-\({T}_{c}\) superconductors. Phys. Rev. B 73, 024510 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Amoretti .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Amoretti, A. (2017). Physical Implications . In: Condensed Matter Applications of AdS/CFT. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-61875-3_9

Download citation

Publish with us

Policies and ethics