Skip to main content

Risk Stratification in Newly Diagnosed Transplant Ineligible Multiple Myeloma

  • Chapter
  • First Online:
Personalized Therapy for Multiple Myeloma

Abstract

The management of transplant ineligible MM can be challenging due to competing comorbidities and issues with frailty. The choice of regimen, dosing, duration of treatment (continuous versus fixed), management of side effects, and supportive care are all relevant to this patient population. In the present chapter, these aspects of care are summarized considering recent phase III studies as well as frailty assessment models for this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith BD, et al. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol. 2009;27:2758–65.

    Article  PubMed  Google Scholar 

  2. Turesson I, et al. Patterns of multiple myeloma during the past 5 decades: stable incidence rates for all ages groups in the population by rapidly changing age distribution in the clinic. Mayo Clinic Proc. 2010;85:225–30.

    Article  Google Scholar 

  3. Brenner H, et al. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood. 2008;111:2521–6.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar SK. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar S, Berdeja JG, Niesvizky R, et al. Long-term ixazomib maintenance is tolerable and improves depth of response following ixazomib-lenalidomide-dexamethasone induction in patients with previously untreated multiple myeloma: phase 2 study results. ASH Annual Meeting Abstracts 2014; abstract 82; 2013.

    Google Scholar 

  6. Schaapveld M, et al. Improved survival among younger but not among older patients with multiple myeloma in the Netherlands, a population-based study since 1989. Eur J Cancer. 2010;46:160–9.

    Article  PubMed  Google Scholar 

  7. Warren JL, et al. Multiple myeloma treatment transformed: a population-based study of changes in initial management approaches in the United States. J Clin Oncol. 2013;31:1984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gay F, et al. Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: analysis of 1175 patients. Blood. 2011;117:3025–31.

    Article  CAS  PubMed  Google Scholar 

  9. Fayers PM, et al. Thalidomide for previously untreated elderly patients with multiple myeloma: meta-analysis of 1685 individual patients in six randomized clinical trials. Blood. 2011;118:1239–47.

    Article  CAS  PubMed  Google Scholar 

  10. San Miguel JF, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. New Engl J Med. 2008;359:906–17.

    Article  CAS  PubMed  Google Scholar 

  11. Morabito F, et al. Bortezomib, melphalan, prednisone (VMP) versus melphalan, prednisone, thalidomide (MPT) in elderly newly diagnosed multiple myeloma patients: a retrospective case-matched study. Am J Hematol. 2014;89:355–62.

    Article  CAS  PubMed  Google Scholar 

  12. Moreau P, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011;12:431–40.

    Article  PubMed  Google Scholar 

  13. Bringhen S. Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood. 2010;116:4745–53.

    Article  CAS  PubMed  Google Scholar 

  14. Palumbo A, et al. Bortezomib as induction before autologous transplantation, followed by lenalidomide as consolidation-maintenance in untreated multiple myeloma patients. J Clin Oncol. 2010;28:800–7.

    Article  CAS  PubMed  Google Scholar 

  15. Palumbo A, et al. Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: updated follow-up and improved survival. J Clin Oncol. 2014;32:634–40.

    Article  CAS  PubMed  Google Scholar 

  16. Mateos M-V, et al. Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myeloma: a randomised trial. Lancet Oncol. 2010;11:934–41.

    Article  CAS  PubMed  Google Scholar 

  17. Mateos MV, et al. Sequential versus alternating administration of VMP and Rd in elderly patients with newly diagnosed MM. Blood. 2015;127(4):420–5.

    Article  PubMed  Google Scholar 

  18. Mateos MV, et al. An open-label, multicenter, phase 1b study of daratumumab in combination with pomalidomide-dexamethasone and with backbone regimens in patients with multiple myeloma. Haematologica 100 s1: abstract 275; 2015.

    Google Scholar 

  19. Palumbo A, et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med. 2012;366:1759–69.

    Article  CAS  PubMed  Google Scholar 

  20. Zweegman S, et al. Melphalan, prednisone, and lenalidomide versus melphalan, prednisone, and thalidomide in untreated multiple myeloma. Blood. 2016;127:1109–16.

    Google Scholar 

  21. Stewart AK, et al. Melphalan, prednisone, and thalidomide vs melphalan, prednisone, and lenalidomide (ECOG E1A06) in untreated multiple myeloma. Blood. 2015;126:1294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Donnell E, et al. A phase II study of modified lenalidomide, bortezomib, and dexamethasone (RVD lite) for transplant-ineligible patients with newly diagnosed multiple myeloma. ASH Annual Meeting Abstracts: abstract 3454; 2014.

    Google Scholar 

  23. Moreau P, et al. Phase 1/2 study of carfilzomib plus melphalan and prednisone in patients aged over 65 years with newly diagnosed multiple myeloma. Blood. 2015;125:3100–4.

    Article  CAS  PubMed  Google Scholar 

  24. Bringhen S, et al. Carfilzomib, cyclophosphamide and dexamethasone in patients with newly diagnosed multiple myeloma: a multicenter, phase 2 study. Blood. 2014;124:63–9.

    Article  CAS  PubMed  Google Scholar 

  25. Bringhen S, et al. Weekly carfilzomib, cyclophosphamide and dexamethasone (wCCyd) in elderly newly diagnosed multiple myeloma patients: results of a phase 2 study. ASH Annual Meeting Abstracts: abstract 1828; 2015.

    Google Scholar 

  26. Dytfeld D, et al. Carfilzomib, lenalidomide and low-dose dexamethasone in elderly patients with newly diagnosed multiple myeloma. Haematologica. 2014;99:162–4.

    Article  Google Scholar 

  27. Kumar SK, et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol. 2014;15:1503–12.

    Google Scholar 

  28. Dimopoulos MA, et al. Randomized phase 2 study of the all-oral combination of investigational proteasome inhibitor ixazomib plus cyclophosphamide and low-dose dexamethasone (ICd) in patients with newly diagnosed multiple myeloma who are transplant-ineligible. ASH Annual Meeting Abstracts: abstract 26; 2015.

    Google Scholar 

  29. Benboubker L, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 2014;371:906–17.

    Article  CAS  PubMed  Google Scholar 

  30. Hulin C, et al. Update outcomes and impact of age with lenalidomide and low-dose dexamethasone or melphalan, prednisone, and thalidomide in randomized, phase III FIRST Trial. J Clin Oncol. 2016;34:3609–17.

    Google Scholar 

  31. Magarotto V, et al. Triplet vs doublet lenalidomide-containing regimens for the treatment of elderly patients with newly diagnosed multiple myeloma. Blood. 2016;127:1102–8.

    Google Scholar 

  32. Niesvizky R, et al. Community-based phase IIIB trial of three UPFRONT bortezomib-based myeloma regimens. J Clin Oncol. 2015;33:3921–9.

    Article  CAS  PubMed  Google Scholar 

  33. Falco P, et al. Lenalidomide-prednisone induction followed by lenalidomide-melphalan-prednisone consolidation and lenalidomide-prednisone maintenance in newly diagnosed elderly unfit myeloma patients. Leukemia. 2013;27:695–701.

    Article  CAS  PubMed  Google Scholar 

  34. Larocca A, et al. A phase 2 study of three low-dose intensity subcutaneous bortezomib regimens in elderly frail patients with untreated multiple myeloma. Leukemia. 2016;30:1320–26.

    Google Scholar 

  35. Avet-Loiseau H, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109:3489–95.

    Article  CAS  PubMed  Google Scholar 

  36. Gertz MA, et al. Clinical implications of t(11;14)(q13; q32), t(4 ;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood. 2005;106:2837–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Usmani SZ, et al. Defining and treating high-risk multiple myeloma. Blood. 2015;29:2119–25.

    CAS  Google Scholar 

  38. Nilsson T, et al. A pooled analysis of karyotypic patterns, breakpoints and imbalances in 783 cytogenetically abnormal multiple myeloma reveals frequently involved chromosome segments as well as significant age- and sex-related differences. Br J Haematol. 2003;120:960–9.

    Article  PubMed  Google Scholar 

  39. Avet-Loiseau H, et al. Chromosomal abnormalities are major prognostic factors in elderly patients with multiple myeloma: the Intergroupe Francophone du Myelome experience. J Clin Oncol. 2013;31:2806–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Caltagirone S, et al. Chromosome 1 abnormalities in elderly patients with newly diagnosed multiple myeloma treated with novel therapies. Haematologica. 2014;99:1611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Morgan GJ, et al. Long-term follow-up of MRC myeloma IX trial: survival outcomes with bisphosphonate and thalidomide treatment. Clin Cancer Res. 2013;19:6030–8.

    Article  CAS  PubMed  Google Scholar 

  42. Palumbo A, et al. Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: a randomized controlled trial. J Clin Oncol. 2010;34:5101–8.

    Article  Google Scholar 

  43. Mateos MV, et al. Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clin Oncol. 2010;28:2259–66.

    Article  CAS  PubMed  Google Scholar 

  44. Mateos MV, et al. Outcome according to cytogenetic abnormalities and DNA ploidy in myeloma patients receiving short induction with weekly bortezomib followed by maintenance. Blood. 2011;118:4547–53.

    Article  CAS  PubMed  Google Scholar 

  45. Avet-Loiseau H, et al. Impact of cytogenetics on outcome of transplant-ineligible patients with newly diagnosed multiple myeloma treated with continuous lenalidomide plus low-dose dexamethasone in the First (MM-020) Trial. ASH Annual Meeting Abstracts: abstract 730; 2015.

    Google Scholar 

  46. Vu T, et al. Characteristics of exceptional responders to lenalidomide-based therapy in multiple myeloma. Blood Cancer J. 2015;5:e363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumar S, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119:2100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greipp PR, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412–2320.

    Article  PubMed  Google Scholar 

  49. Avet-Loiseau H, et al. Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an International Myeloma Working Group collaborative project. Leukemia. 2013;27:711–7.

    Article  CAS  PubMed  Google Scholar 

  50. Palumbo A, et al. Revised International Staging System for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33:2863–69.

    Google Scholar 

  51. Shaughnessy JD, et al. A validates gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–84.

    Article  CAS  PubMed  Google Scholar 

  52. Kuiper R, et al. A gene expression signature for high-risk multiple myeloma. Leukemia. 2012;26:2406–13.

    Article  CAS  PubMed  Google Scholar 

  53. Kuiper R, et al. Prediction of high- and low-risk multiple myeloma based on gene expression and the International Staging System. Blood. 2015;126:1996–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mateo G, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol. 2008;26:2737–44.

    Google Scholar 

  55. Paiva B, et al. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia. 2012;26:1862–9.

    Google Scholar 

  56. Gonsalves MI, et al. Quantification of clonal circulating plasma cells in newly diagnosed multiple myeloma: implications for redefining high-risk myeloma. Leukemia. 2014;28:2060–5.

    Google Scholar 

  57. Cavo M, et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomized phase 3 study. Lancet. 2010;376:2075–85.

    Article  CAS  PubMed  Google Scholar 

  58. Kapoor P, et al. Importance of achieving stringent complete response after autologous stem-cell transplantation in multiple myeloma. J Clin Oncol. 2013;31:4529–35.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Durie BG, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–73.

    Article  CAS  PubMed  Google Scholar 

  60. Martinez-Lopez J, et al. Critical analysis of the stringent complete response in multiple myeloma: contribution of sFLC and bone marrow clonality. Blood. 2015;126:858–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rawstron AC, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX study. J Clin Oncol. 2013;31:2540–7.

    Article  PubMed  Google Scholar 

  62. Paiva B, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. Blood. 2011;29:1627–33.

    CAS  Google Scholar 

  63. Paiva B, et al. The relevance of minimal residual disease (MRD) monitoring in elderly multiple myeloma patients. ASH Annual Meeting Abstracts: abstract 4181; 2015.

    Google Scholar 

  64. Bringhen S, et al. Age and organ damage correlate with poor survival in myeloma patients: meta-analysis of 1435 individual patient data from 4 randomized trials. Haematologica. 2013;98:980–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dimopoulos MA, et al. Myeloma in octogenarians: disease characteristics and clinical outcomes in the era of modern anti-myeloma therapy. ASH Annual Meeting Abstracts: abstract 4738; 2014.

    Google Scholar 

  66. Pulte D, et al. Improvement in survival of older adults with multiple myeloma: results of an updated period analysis of SEER data. Oncologist. 2011;16:1600–3.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kumar SK, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–8.

    Google Scholar 

  68. Badros A, et al. Autologous stem cell transplantation in elderly multiple myeloma patients over the age of 70 years. Br J Haematol. 2001;114:600–7.

    Article  CAS  PubMed  Google Scholar 

  69. Facon T, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99–06): a randomised trial. Lancet. 2007;370:1209–18.

    Article  CAS  PubMed  Google Scholar 

  70. Palumbo A, et al. Dose-intensive melphalan with stem cell support (MEL100) is superior to standard treatment in elderly myeloma patients. Blood. 1999;94:1248–53.

    CAS  PubMed  Google Scholar 

  71. Offidani M, et al. Assessment of vulnerability measures and their effect on survival in a real-life population of multiple myeloma patients registered at Marche Region multiple myeloma registry. Clin Lymphoma Myeloma Leuk. 2012;12:423–32.

    Article  PubMed  Google Scholar 

  72. Kleber M, et al. Validation of the Freiburg Comorbidity Index in 466 multiple myeloma patients and combination with the international staging system are highly predictive for outcome. Clin Lymphoma Myeloma Leuk. 2013;13:541–51.

    Article  PubMed  Google Scholar 

  73. Kim SM, et al. Comparison of the Freiburg and Charlson comorbidity indices in predicting overall survival in elderly patients with newly diagnosed multiple myeloma. Biomed Res Int. 2014;2014:437852.

    Google Scholar 

  74. Corsetti MT, et al. Hematologic improvement and response in elderly AML/RAEB patients treated with valproic acid and low-dose Ara-C. Leuk Res. 2011;35:991–7.

    Article  CAS  PubMed  Google Scholar 

  75. Klepin HD, et al. The feasibility of inpatient geriatric assessment for older adult receiving induction chemotherapy for acute myelogenous leukemia. J Am Geriatr Soc. 2011;59:1837–46.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Muffly LS, et al. Pilot study of comprehensive geriatric assessment (CGA) in allogeneic transplant: CGA captures a high prevalence of vulnerabilities in older transplant recipients. Biol Blood Marrow Transplant. 2013;19:429–34.

    Article  PubMed  Google Scholar 

  77. Extermann M, et al. Use of comprehensive geriatric assessment in older cancer patients: recommendations from the task force on CGA of the International Society of Geriatric Oncology (SIOG). Crit Rev Oncol Hematol. 2005;55:241–52.

    Google Scholar 

  78. Haymaker ME, et al. The relevance of a geriatric assessment for elderly patients with a haematological malignancy—a systematic review. Leuk Res. 2014;38:275–83.

    Article  Google Scholar 

  79. Lawton MP. Scales to measure competence in everyday activities. Phychopharmacol Bull. 1988;24:609–14.

    CAS  Google Scholar 

  80. Bila J, et al. Prognostic effect of comorbidity indices in elderly patients with multiple myeloma. Clin Lymphoma Myeloma Leuk. 2015;15:416–9.

    Article  PubMed  Google Scholar 

  81. Palumbo A, et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: an International Myeloma Working Group report. Blood. 2015;125:2068–74.

    Google Scholar 

  82. Ludwig H, et al. Thalidomide-dexamethasone compared to melphalan-prednisolone in elderly patients with multiple myeloma. Blood. 2009;113:3435–42.

    Article  CAS  PubMed  Google Scholar 

  83. Rajkumar SV, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 2010;11:29–37.

    Article  CAS  PubMed  Google Scholar 

  84. Delforge M, et al. Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. Lancet Oncol. 2010;11:1086–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Offidani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Offidani, M. et al. (2018). Risk Stratification in Newly Diagnosed Transplant Ineligible Multiple Myeloma. In: Usmani, S., Nooka, A. (eds) Personalized Therapy for Multiple Myeloma. Springer, Cham. https://doi.org/10.1007/978-3-319-61872-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61872-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61871-5

  • Online ISBN: 978-3-319-61872-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics