Skip to main content

Chapter 8 Morse Theory and Floer Homology

  • Chapter
  • First Online:
Riemannian Geometry and Geometric Analysis

Part of the book series: Universitext ((UTX))

  • 7029 Accesses

Abstract

This chapter introduces Morse theory and Floer homology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this textbook, we do not systematically discuss infinite dimensional Riemannian manifolds. The essential point is that they are modeled on Hilbert instead of Euclidean spaces. At certain places, the constructions require a little more care than in the finite dimensional case, because compactness arguments are no longer available.

Bibliography

  1. A. Abbondandolo and P. Majer. Morse homology on Hilbert spaces. Comm.Pure Appl.Math., 54:689–760, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Ballmann. Der Satz von Ljusternik und Schnirelman. Bonner Math. Schriften, 102:1–25, 1978.

    Google Scholar 

  3. V. Bangert. On the existence of closed geodesics on two-spheres. Internat. J. Math, 4:1–10, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Banyaga and D.Hurtubise. Lectures on Morse homology. Kluwer, 2004.

    Google Scholar 

  5. M. Betz and R.Cohen. Graph moduli spaces and cohomology operations. Turkish J.Math., 18:23–41, 1994.

    MathSciNet  MATH  Google Scholar 

  6. K.C. Chang. Infinite dimensional Morse theory and multiple solution problems. Birkhäuser, 1993.

    Book  MATH  Google Scholar 

  7. S. N. Chow and J. Hale. Methods of bifurcation theory. Springer, 1982.

    Google Scholar 

  8. C. Conley. Isolated invariant sets and the Morse index. CBMS Reg. Conf. Ser. Math. 38, AMS, Providence, R.I., 1978.

    Google Scholar 

  9. C. Conley and E. Zehnder. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math., 37:207–253, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Floer. An instanton invariant for 3-manifolds. Comm.Math.Phys., 118:215–240, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Floer. Witten’s complex and infinite dimensional Morse theory. J. Diff. Geom., 30:207–221, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Floer and H. Hofer. Coherent orientations for periodic orbit problems in symplectic geometry. Math. Z., 212:13–38, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Franks. Morse-Smale flows and homotopy theory. Topology, 18:199–215, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Franks. Geodesics on S 2 and periodic points of annulus diffeomorphisms. Inv. math., 108:403–418, 1992.

    Article  MATH  Google Scholar 

  15. M. Goresky and R. MacPherson. Stratified Morse theory. Ergebnisse 14, Springer, 1988.

    Google Scholar 

  16. M. Grayson. Shortening embedded curves. Ann. Math., 120:71–112, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Hingston. On the growth of the number of closed geodesics on the two-sphere. Intern. Math. Res., 9:253–262, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Jost. A nonparametric proof of the theorem of Ljusternik and Schnirelman. Arch. Math., 53:497–509, 1989. Correction in Arch. Math. 56 (1991), 624.

    Google Scholar 

  19. J. Jost and X. Li-Jost. Calculus of variations. Cambridge Univ. Press, 1998.

    MATH  Google Scholar 

  20. W. Klingenberg. Lectures on closed geodesics. Springer, 1978.

    Google Scholar 

  21. U. Ludwig. Stratified Morse theory with tangential conditions. arXiv: math/0310019v1.

    Google Scholar 

  22. J. Milnor. Morse theory, Ann. Math. Studies 51. Princeton Univ. Press, 1963.

    Google Scholar 

  23. J. Milnor. Lectures on theh-cobordism theorem. Princeton Univ. Press, 1965.

    Book  Google Scholar 

  24. D. Quillen. Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl., 19:31–34, 1985.

    Article  MATH  Google Scholar 

  25. M. Schwarz. Morse homology. Birkhäuser, 1993.

    Book  MATH  Google Scholar 

  26. M. Schwarz. Equivalences for Morse homology. Contemp. Math., 246:197–216, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Smale. On gradient dynamical systems. Ann. Math., 74:199–206, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Spanier. Algebraic topology. McGraw Hill, 1966.

    Google Scholar 

  29. M. Struwe. Variational methods. Springer,42008.

    Google Scholar 

  30. R. Thom. Sur une partition cellules associés à une fonction sur une variété. C. R. Acad. Sci. Paris, 228:973–975, 1949.

    MathSciNet  MATH  Google Scholar 

  31. J. Weber. The Morse-Witten complex via dynamical systems. arXiv:math.GT/0411465, 2004.

    Google Scholar 

  32. E. Witten. Supersymmetry and Morse theory. J. Diff. Geom, 17:661–692, 1982.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jost, J. (2017). Chapter 8 Morse Theory and Floer Homology. In: Riemannian Geometry and Geometric Analysis. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-61860-9_9

Download citation

Publish with us

Policies and ethics