Skip to main content

Chapter 2 Lie Groups and Vector Bundles

  • Chapter
  • First Online:
  • 7005 Accesses

Part of the book series: Universitext ((UTX))

Abstract

In this chapter, another fundamental concept is introduced, that of a vector bundle. The structure group of a vector bundle is a Lie group, and we shall therefore use this opportunity to also discuss Lie groups and their infinitesimal versions, the Lie algebras. Complex and symplectic structures are also discussed. Spin geometry is treated in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To be precise, Dirac [112] took the operator \(-\Delta \). This case will be addressed in an exercise.

  2. 2.

    Consider also the matrices (2.6.39) introduced in [112].

  3. 3.

    Every rotation of a plane is a product of two reflections, and the normal form of an orthogonal matrix shows that it can be represented as a product of rotations and reflections in mutually orthogonal planes.

  4. 4.

    For the sake of the present discussion, we identify V with \(\mathbb{R}^{n}\) (\(n =\dim _{\mathbb{R}}V\)).

  5. 5.

    The genus is a basic topological invariant of a compact surface. There are several different ways of defining or characterizing it, see [243]. For instance, it equals the first Betti number b 1, the dimension of the first cohomology, that will be defined in the next chapter.

  6. 6.

    In the bibliography, a superscript will indicate the edition of a monograph. For instance,72017 means 7th edition, 2017.

Bibliography

In the bibliography, a superscript will indicate the edition of a monograph. For instance,72017 means 7th edition, 2017.

  1. V.I. Arnold. Mathematical methods of classical mechanics. Springer-Verlag, Berlin, 1978.

    Book  MATH  Google Scholar 

  2. M. Atiyah, R. Bott, and A. Shapiro. Clifford modules. Topology, 3(Suppl. I):3–38, 1964.

    Google Scholar 

  3. N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Springer, 1992.

    Google Scholar 

  4. P. Dirac. The quantum theory of the electron. Proc. R. Soc. Lond. Ser. A, 778:618–624, 1928.

    Google Scholar 

  5. M. Gromov. Pseudoholomorphic curves in symplectic geometry. Inv. math., 82:307–347, 1985.

    Article  MATH  Google Scholar 

  6. S. Helgason. Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, 1978.

    Google Scholar 

  7. H. Hofer and E. Zehnder. Symplectic invariants and Hamiltonian dynamics. Birkhäuser, 1994.

    Book  MATH  Google Scholar 

  8. D. Husemoller. Fibre bundles. Springer, GTM 20, 1975.

    Google Scholar 

  9. J. Jost. Compact Riemann surfaces. Springer,32006.

    Google Scholar 

  10. J. Jost and X. Li-Jost. Calculus of variations. Cambridge Univ. Press, 1998.

    MATH  Google Scholar 

  11. H.B. Lawson and M.L. Michelsohn. Spin geometry. Princeton University Press, Princeton, 1989.

    MATH  Google Scholar 

  12. D. McDuff and D. Salamon. Introduction to symplectic topology. Oxford Univ.Press, 1995.

    MATH  Google Scholar 

  13. J. Morgan. The Seiberg-Witten equations and applications to the topology of smooth four manifolds. Princeton University Press, 1996.

    Google Scholar 

  14. J. Moser. On the volume elements of a manifold. Trans.AMS, 120:286–294, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Newlander and L. Nirenberg. Complex analytic coordinates in almost complex manifolds. Ann. Math., 65:391–404, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Salamon. Spin geometry and Seiberg-Witten invariants. 1995.

    Google Scholar 

  17. H. Wu. The Bochner technique in differential geometry. Math. Rep., 3(2):289–538, 1988.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jost, J. (2017). Chapter 2 Lie Groups and Vector Bundles. In: Riemannian Geometry and Geometric Analysis. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-61860-9_2

Download citation

Publish with us

Policies and ethics