Skip to main content

Food Sales Prediction with Meteorological Data — A Case Study of a Japanese Chain Supermarket

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10387))

Included in the following conference series:

Abstract

The weather has a strong influence on food retailers’ sales, as it affects customers emotional state, drives their purchase decisions, and dictates how much they are willing to spend. In this paper, we introduce a deep learning based method which use meteorological data to predict sales of a Japanese chain supermarket. To be specific, our method contains a long short-term memory (LSTM) network and a stacked denoising autoencoder network, both of which are used to learn how sales changes with the weathers from a large amount of history data. We showed that our method gained initial success in predicting sales of some weather-sensitive products such as drinks. Particularly, our method outperforms traditional machine learning methods by 19.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to privacy issues, the supermarket’s name has been omitted.

References

  1. Alomar, M.L., Canals, V., Perez-Mora, N., Martínez-Moll, V., Rosselló, J.L.: Fpga-based stochastic echo state networks for time-series forecasting. Comput. Intell. Neurosci. 3917892, 1–14 (2016)

    Article  Google Scholar 

  2. Amiri, H., Resnik, P., Boyd-Graber, J., Daumé III, H.: Learning text pair similarity with context-sensitive autoencoders. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, pp. 1882–1892, August 2016

    Google Scholar 

  3. Bengio, Y.: Learning deep architectures for ai. Foundations and trends® in. Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Proceedings of the 20th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 153–160, December 2006

    Google Scholar 

  5. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  6. Brentan, B.M., Luvizotto Jr., E., Herrera, M., Izquierdo, J., Pérez-García, R.: Hybrid regression model for near real-time urban water demand forecasting. J. Comput. Appl. Math. 309, 532–541 (2017)

    Google Scholar 

  7. Chandra, R., Zhang, M.: Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86, 116–123 (2012)

    Article  Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale internet traffic forecasting using neural networks and time series methods. Exp. Syst. 29(2), 143–155 (2012)

    Google Scholar 

  10. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc. Ser. B 20(2), 215–242 (1958)

    MathSciNet  MATH  Google Scholar 

  11. De Felice, M., Alessandri, A., Ruti, P.M.: Electricity demand forecasting over italy: Potential benefits using numerical weather prediction models. Electr. Power Syst. Res. 104, 71–79 (2013)

    Article  Google Scholar 

  12. Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Japan. Soc. Artif. Intell. 14(5), 771–780 (1999)

    Google Scholar 

  13. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint (2017). arXiv:1701.01887

  15. Gao, Y., Hendricks, L.A., Kuchenbecker, K.J., Darrell, T.: Deep learning for tactile understanding from visual and haptic data. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, pp. 536–543, May 2016

    Google Scholar 

  16. Graves, A.: Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of the 2013 IEEE International Conference on Acoustics. Speech and Signal Processing, Vancouver, Canada, pp. 6645–6649, May 2013

    Google Scholar 

  17. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, Canada, pp. 278–282, August 1995

    Google Scholar 

  19. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  21. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. Neurocomputing 68, 41–50 (1990)

    Article  MathSciNet  Google Scholar 

  22. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

    Google Scholar 

  23. Nita, S.: Application of big data technology in support of food manufacturers commodity demand forecasting. NEC Tech. J. 10(1), 90–93 (2015)

    Google Scholar 

  24. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  25. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015)

    Article  Google Scholar 

  26. Schulz, M., Matthies, M.: Artificial neural networks for modeling time series of beach litter in the southern north sea. Marine Environ. Res. 98, 14–20 (2014)

    Article  Google Scholar 

  27. Silberer, C., Lapata, M.: Learning grounded meaning representations with autoencoders. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD, USA, pp. 721–732, June 2014

    Google Scholar 

  28. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, pp. 1096–1103, July 2008

    Google Scholar 

  29. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

We gratefully thank Japan Weather Association especially Mr.Tomohiro Yoshikai for supporting our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, X., Ichise, R. (2017). Food Sales Prediction with Meteorological Data — A Case Study of a Japanese Chain Supermarket. In: Tan, Y., Takagi, H., Shi, Y. (eds) Data Mining and Big Data. DMBD 2017. Lecture Notes in Computer Science(), vol 10387. Springer, Cham. https://doi.org/10.1007/978-3-319-61845-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61845-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61844-9

  • Online ISBN: 978-3-319-61845-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics