Skip to main content

Building Fractals with a Robot Swarm

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10386))

Included in the following conference series:

  • 2189 Accesses

Abstract

Fractals are common in nature, and can be used as well for both art and engineering. We classify those fractals that can be represented by line segments into several types: tree-based fractals, curve-based fractals, and space filling fractals. We develop a set of methods to generate fractals with a swarm of robots by using robots as vertices, and line segments between selected robots as edges. We then generalize our algorithms so that new fractals can be built with only a few parameters, and we expand our methods to generate some shape-based fractals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelson, H., DiSessa, A.: Turtle Geometry. MIT Press, Cambridge (1981)

    MATH  Google Scholar 

  2. Addison, P.: Fractals and Chaos: An Illustrated Course. Taylor & Francis, Gloucester (1997)

    Book  MATH  Google Scholar 

  3. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Multi-robot system for artistic pattern formation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4512–4517, May 2011

    Google Scholar 

  4. Ashlock, D., Tsang, J.: Evolving fractal art with a directed acyclic graph genetic programming representation. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2137–2144, May 2015

    Google Scholar 

  5. Aznar, F., Pujol, M., Rizo, R.: L-system-driven self-assembly for swarm robotics. In: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds.) CAEPIA 2011. LNCS, vol. 7023, pp. 303–312. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25274-7_31

    Chapter  Google Scholar 

  6. Cantor, G.: Ueber unendliche, lineare punktmannichfaltigkeiten. Math. Ann. 15, 1–7 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choudhary, R., Yadav, S., Jain, P., Sharma, M.M.: Full composite fractal antenna with dual band used for wireless applications. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2517–2520, September 2014

    Google Scholar 

  8. Cohen, N.: Fractal antennas and fractal resonators. US Patent 6,452,553, 17 September 2002

    Google Scholar 

  9. Degener, B., Kempkes, B., Kling, P., auf der Heide, M.F.: A continuous, local strategy for constructing a short chain of mobile robots. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 168–182. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13284-1_14

    Chapter  Google Scholar 

  10. Douady, A., Hubbard, J.: Étude dynamique des polynômes complexes. No. v. 1–2 in Publications mathématiques d’Orsay, Département de Mathématique, Université de Paris-Sud (1984)

    Google Scholar 

  11. Dynia, M., Kutylowski, J., auf der Heide, M.F., Schrieb, J.: Local strategies for maintaining a chain of relay stations between an explorer and a base station. In: Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2007, pp. 260–269. ACM, New York (2007)

    Google Scholar 

  12. Goldman, R.: An Integrated Introduction to Computer Graphics and Geometric Modeling, 1st edn. CRC Press Inc., Boca Raton (2009)

    MATH  Google Scholar 

  13. Guo, H., Meng, Y., Jin, Y.: Swarm robot pattern formation using a morphogenetic multi-cellular based self-organizing algorithm. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3205–3210, May 2011

    Google Scholar 

  14. auf der Heide, F.M., Schneider, B.: Local strategies for connecting stations by small robotic networks. In: Hinchey, M., Pagnoni, A., Rammig, F.J., Schmeck, H. (eds.) Biologically-Inspired Collaborative Computing. IFIP – The International Federation for Information Processing, vol. 268. Springer, Boston (2008)

    Google Scholar 

  15. Ju, T., Schaefer, S., Goldman, R.: Recursive turtle programs and iterated affine transformations. Comput. Graph. 28(6), 991–1004 (2004)

    Article  Google Scholar 

  16. Kharbanda, M., Bajaj, N.: An exploration of fractal art in fashion design. In: 2013 International Conference on Communication and Signal Processing, pp. 226–230, April 2013

    Google Scholar 

  17. Krupke, D., Hemmer, M., McLurkin, J., Zhou, Y., Fekete, S.: A parallel distributed strategy for arraying a scattered robot swarm. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2795–2802, September 2015

    Google Scholar 

  18. Kumar, D., Manmohan, Ahmed, S.: Modified ring shaped Sierpinski triangle fractal antenna for c-band and x-band applications. In: 2014 International Conference on Computational Intelligence and Communication Networks, pp. 78–82, November 2014

    Google Scholar 

  19. Kutyłowski, J., auf der Heide, F.M.: Optimal strategies for maintaining a chain of relays between an explorer and a base camp. Theor. Comput. Sci. 410(36), 3391–3405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, S.K., Fekete, S.P., McLurkin, J.: Geodesic topological voronoi tessellations in triangulated environments with multi-robot systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3858–3865, September 2014

    Google Scholar 

  21. Lévy, P.: Les courbes planes ou gauches et les surfaces composées de parties semblables au tout. J. de l’Ecole Polytechnique Série III(7-8), 227–291 (1938). Reprinted in “Oeuvres de Paul Lévy”, vol. II, (Dugué, D., Deheuvels, P., Ibéro, M. (eds.)), pp. 331–394, Gauthier Villars, Paris, Bruxelles and Montréal (1973)

    Google Scholar 

  22. Litus, Y., Vaughan, R.: Fall in! sorting a group of robots with a continuous controller. In: 2010 Canadian Conference on Computer and Robot Vision (CRV), pp. 269–276, May 2010

    Google Scholar 

  23. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  24. Peiravian, F., Kermanshah, A., Derrible, S.: Spatial data analysis of complex urban systems. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 1–6, October 2014

    Google Scholar 

  25. Puente-Baliarda, C., Romeu, J., Pous, R., Cardama, A.: On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans. Antennas Propag. 46(4), 517–524 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rold, F.D.: Deterministic chaos in mobile robots. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, July 2015

    Google Scholar 

  27. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    Article  Google Scholar 

  28. Sankaranarayanan, D., Venkatakiran, D., Mukherjee, B.: Koch snowflake dielectric resonator antenna with periodic circular slots for high gain and wideband applications. In: 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), pp. 1418–1421, August 2016

    Google Scholar 

  29. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robots 17(2), 137–162 (2004)

    Article  Google Scholar 

  30. Sugawara, K., Watanabe, T.: A study on foraging behavior of simple multi-robot system. In: IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 2002, vol. 4, pp. 3085–3090, November 2002

    Google Scholar 

  31. Valiant Designs Limited: The valiant turtle (1983)

    Google Scholar 

  32. Xu, S., Yang, J., Wang, Y., Liu, H., Gao, J.: Application of fractal art for the package decoration design. In: 2009 IEEE 10th International Conference on Computer-Aided Industrial Design Conceptual Design, pp. 705–709, November 2009

    Google Scholar 

  33. Zhang, J., Zhao, H., Luo, G., Zhou, Y.: The study on fractals of internet router-level topology. In: 2008 The 9th International Conference for Young Computer Scientists, pp. 2743–2747, November 2008

    Google Scholar 

  34. Zhou, Y., Goldman, R., McLurkin, J.: An asymmetric distributed method for sorting a robot swarm. IEEE Robot. Autom. Lett. 2(1), 261–268 (2017)

    Article  Google Scholar 

  35. Zhou, Y.: Swarm Robotics: Measurement and Sorting. Master’s thesis, Rice University, Houston, TX, USA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhou, Y., Goldman, R. (2017). Building Fractals with a Robot Swarm. In: Tan, Y., Takagi, H., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2017. Lecture Notes in Computer Science(), vol 10386. Springer, Cham. https://doi.org/10.1007/978-3-319-61833-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61833-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61832-6

  • Online ISBN: 978-3-319-61833-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics