Skip to main content

Recent Progress Using Matheuristics for Strategic Maritime Inventory Routing

  • Chapter
  • First Online:
Modeling, Computing and Data Handling Methodologies for Maritime Transportation

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 131))

Abstract

This chapter presents an extensive computational study of simple, but prominent matheuristics (i.e., heuristics that rely on mathematical programming models) to find high quality ship schedules and inventory policies for a class of maritime inventory routing problems. Our computational experiments are performed on a test bed of the publicly available MIRPLib instances. This class of inventory routing problems has few constraints relative to some operational problems, but is complicated by long planning horizons. We compare several variants of rolling horizon heuristics, K-opt heuristics, local branching, solution polishing, and hybrids thereof. Many of these matheuristics substantially outperform the commercial mixed-integer programming solvers CPLEX 12.6.2 and Gurobi 6.5 in their ability to quickly find high quality solutions. New best known incumbents are found for 26 out of 70 yet-to-be-proved-optimal instances and new best known bounds on 56 instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the term \(\frac{(f_j-f_0)^+}{1-f_0}\) can only increase the coefficient of \(x_j\), which makes the constraint stronger.

References

  1. Agra, A., Andersson, H., Christiansen, M., Wolsey, L.: A maritime inventory routing problem: discrete time formulations and valid inequalities. Networks 62(4), 297–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agra, A., Christiansen, M., Delgado, A., Simonetti, L.: Hybrid heuristics for a short sea inventory routing problem. Eur. J. Oper. Res. 236(3), 924–935 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-Ameri, T.A., Shah, N., Papageorgiou, L.G.: Optimization of vendor-managed inventory systems in a rolling horizon framework. Comput. Ind. Eng. 54(4), 1019–1047 (2008)

    Article  Google Scholar 

  4. Al-Khayyal, F., Hwang, S.: Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part I: Applications and model. Eur. J. Oper. Res. 176(1), 106–130 (2007)

    Article  MATH  Google Scholar 

  5. Andersson, H., Hoff, A., Christiansen, M., Hasle, G., Løkketangen, A.: Industrial aspects and literature survey: combined inventory management and routing. Comput. Oper. Res. 37(9), 1515–1536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Archetti, C., Speranza, M.G.: A survey on matheuristics for routing problems. EURO J. Comput. Optim. 2(4), 223–246 (2014)

    Article  MATH  Google Scholar 

  7. Asokan, B.V., Furman, K.C., Goel, V., Shao, Y., Li, G.: Parallel large-neighborhood search techniques for LNG inventory routing. Submitted for publication (2014)

    Google Scholar 

  8. Bertazzi, L., Speranza, M.G.: Matheuristics for inventory routing problems. In: Hybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and Scheduling Solutions, p. 488. IGI Global, Hershey (2011)

    Google Scholar 

  9. Bixby, R., Rothberg, E.: Progress in computational mixed integer programming—a look back from the other side of the tipping point. Ann. Oper. Res. 149(1), 37–41 (2007)

    Google Scholar 

  10. Boschetti, M.A., Maniezzo, V., Roffilli, M., Röhler, A.B.: Matheuristics: optimization, simulation and control. In: Hybrid Metaheuristics, pp. 171–177. Springer (2009)

    Google Scholar 

  11. Brouer, B.D., Desaulniers, G., Pisinger, D.: A matheuristic for the liner shipping network design problem. Transp. Res. Part E: Logist. Transp. Rev. 72, 42–59 (2014)

    Article  Google Scholar 

  12. Campbell, A., Clarke, L., Kleywegt, A., Savelsbergh, M.W.P.: The inventory routing problem. In: Crainic, T.G., Laporte, G. (eds.) Fleet Management and Logistics, pp. 95–113. Kluwer (1998)

    Google Scholar 

  13. Christiansen, M., Fagerholt, K., Flatberg, T., Haugen, O., Kloster, O., Lund, E.H.: Maritime inventory routing with multiple products: a case study from the cement industry. Eur. J. Oper. Res. 208(1), 86–94 (2011)

    Article  Google Scholar 

  14. Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Maritime transportation. In: Barnhart, C., Laporte, G. (eds.) Transportation, Handbooks in Operations Research and Management Science, vol. 14, pp. 189–284. Elsevier (2007)

    Google Scholar 

  15. Coelho, L.C., Cordeau, J.F., Laporte, G.: Thirty years of inventory-routing. Transp. Sci. 48(1), 1–19 (2014)

    Article  Google Scholar 

  16. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math. Programm. 112(1), 3–44 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dauzère-Pérès, S., Nordli, A., Olstad, A., Haugen, K., Koester, U., Myrstad, P.O., Teistklub, G., Reistad, A.: Omya hustadmarmor optimizes its supply chain for delivering calcium carbonate slurry to European paper manufacturers. Interfaces 37(1), 39–51 (2007)

    Article  Google Scholar 

  18. Engineer, F.G., Furman, K.C., Nemhauser, G.L., Savelsbergh, M.W.P., Song, J.H.: A Branch-Price-And-Cut algorithm for single product maritime inventory routing. Oper. Res. 60(1), 106–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fischetti, M., Lodi, A.: Local branching. Math. Programm. 98(1–3), 23–47 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fodstad, M., Uggen, K.T., Rømo, F., Lium, A., Stremersch, G.: LNGScheduler: a rich model for coordinating vessel routing, inventories and trade in the liquefied natural gas supply chain. J. Energy Mark. 3(4), 31–64 (2010)

    Article  Google Scholar 

  21. Furman, K.C., Song, J.H., Kocis, G.R., McDonald, M.K., Warrick, P.H.: Feedstock routing in the ExxonMobil downstream sector. Interfaces 41(2), 149–163 (2011)

    Article  Google Scholar 

  22. Godfrey, G.A., Powell, W.B.: An adaptive dynamic programming algorithm for dynamic fleet management, I: Single period travel times. Transp. Sci. 36(1), 21–39 (2002)

    Article  MATH  Google Scholar 

  23. Godfrey, G.A., Powell, W.B.: An adaptive dynamic programming algorithm for dynamic fleet management, II: Multiperiod travel times. Transp. Sci. 36(1), 40–54 (2002)

    Article  MATH  Google Scholar 

  24. Goel, V., Furman, K.C., Song, J.H., El-Bakry, A.S.: Large neighborhood search for LNG inventory routing. J. Heurist. 18(6), 821–848 (2012)

    Article  Google Scholar 

  25. Goel, V., Slusky, M., van Hoeve, W.J., Furman, K.C., Shao, Y.: Constraint programming for LNG ship scheduling and inventory management. Eur. J. Oper. Res. 241(3), 662–673 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Halvorsen-Weare, E., Fagerholt, K.: Routing and scheduling in a liquefied natural gas shipping problem with inventory and berth constraints. Ann. Oper. Res. 203(1), 167–186 (2013)

    Article  MATH  Google Scholar 

  27. Hemmati, A., Hvattum, L.M., Christiansen, M., Laporte, G.: An iterative two-phase hybrid matheuristic for a multi-product short sea inventory-routing problem. Eur. J. Oper. Res. 252(3), 775–788 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hemmati, A., Stålhane, M., Hvattum, L.M., Andersson, H.: An effective heuristic for solving a combined cargo and inventory routing problem in tramp shipping. Comput. Oper. Res. 64, 274–282 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hewitt, M., Nemhauser, G.L., Savelsbergh, M.W.P.: Branch-and-price guided search for integer programs with an application to the multicommodity fixed-charge network flow problem. INFORMS J. Comput. (2012)

    Google Scholar 

  30. Hewitt, M., Nemhauser, G.L., Savelsbergh, M.W.P., Song, J.H.: A Branch-and-price guided search approach to maritime inventory routing. Comput. Oper. Res. 40(5), 1410–1419 (2013)

    Article  MATH  Google Scholar 

  31. Jiang, Y., Grossmann, I.E.: Alternative mixed-integer linear programming models of a maritime inventory routing problem. Comput. Chem. Eng. 77, 147–161 (2015)

    Article  Google Scholar 

  32. Munguía, L.M., Ahmed, S., Bader, D.A., Nemhauser, G.L., Shao, Y.: Alternating criteria search: a parallel large neighborhood search algorithm for mixed integer programs. Submitted for publication (2016)

    Google Scholar 

  33. Mutlu, F., Msakni, M.K., Yildiz, H., Snmez, E., Pokharel, S.: A comprehensive annual delivery program for upstream liquefied natural gas supply chain. Eur. J. Oper. Res. (2015)

    Google Scholar 

  34. Papageorgiou, D.J., Cheon, M.S., Nemhauser, G., Sokol, J.: Approximate dynamic programming for a class of long-horizon maritime inventory routing problems. Transp. Sci. 49(4), 870–885 (2014)

    Article  Google Scholar 

  35. Papageorgiou, D.J., Keha, A.B., Nemhauser, G.L., Sokol, J.: Two-stage decomposition algorithms for single product maritime inventory routing. INFORMS J. Comput. 26(4), 825–847 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Papageorgiou, D.J., Nemhauser, G.L., Sokol, J., Cheon, M.S., Keha, A.B.: MIRPLib—a library of maritime inventory routing problem instances: survey, core model, and benchmark results. Eur. J. Oper. Res. 235(2), 350–366 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rakke, J.G., Andersson, H., Christiansen, M., Desaulniers, G.: A new formulation based on customer delivery patterns for a maritime inventory routing problem. Transp. Sci. 49(2), 384–401 (2014)

    Article  Google Scholar 

  38. Rakke, J.G., Stålhane, M., Moe, C.R., Christiansen, M., Andersson, H., Fagerholt, K., Norstad, I.: A rolling horizon heuristic for creating a liquefied natural gas annual delivery program. Transp. Res. Part C: Emerg. Technol. 19(5), 896–911 (2011)

    Article  Google Scholar 

  39. Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS J. Comput. 19(4), 534–541 (2007)

    Article  MATH  Google Scholar 

  40. Savelsbergh, M.W.P., Song, J.: An optimization algorithm for the inventory routing problem with continuous moves. Comput. Oper. Res. 35(7), 2266–2282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shao, Y., Furman, K.C., Goel, V., Hoda, S.: A hybrid heuristic strategy for liquefied natural gas inventory routing. Transp. Res. Part C: Emerg. Technol. 53, 151–171 (2015)

    Article  Google Scholar 

  42. Song, J.H., Furman, K.C.: A maritime inventory routing problem: practical approach. Comput. Oper. Res. 40(3), 657–665 (2013)

    Article  MATH  Google Scholar 

  43. Stålhane, M., Rakke, J.G., Moe, C.R., Andersson, H., Christiansen, M., Fagerholt, K.: A construction and improvement heuristic for a liquefied natural gas inventory routing problem. Comput. Ind. Eng. 62(1), 245–255 (2012)

    Article  Google Scholar 

  44. Topaloglu, H.: A parallelizable dynamic fleet management model with random travel times. Eur. J. Oper. Res. 175(2), 782–805 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Topaloglu, H., Powell, W.B.: Dynamic-programming approximations for stochastic time-staged integer multicommodity-flow problems. INFORMS J. Comput. 18(1), 31–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Toriello, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Decomposing inventory routing problems with approximate value functions. Naval Res. Logist. 57(8), 718–727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Uggen, K., Fodstad, M., Nørstebø, V.: Using and extending fix-and-relax to solve maritime inventory routing problems. TOP 21(2), 355–377 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. UNCTAD: Review of Maritime Transport United Nations, New York and Geneva (2015)

    Google Scholar 

Download references

Acknowledgements

We wish to thank two anonymous referees for their feedback, in particular Reviewer 1 whose perceptive comments helped improve the quality of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri J. Papageorgiou .

Editor information

Editors and Affiliations

Appendices

3.6 Nomenclature

Sets are denoted using capital letters in a calligraphic font, such as \(\mathcal {T}\) and \(\mathcal {V}\). Parameters are typically denoted with capital letters in italic font or with Greek characters. Decision variables always appear as lower case letters.

Indices and Sets

$$ \begin{array}{ll} t \in \mathcal {T} &{} \text {set of time periods with} T = |\mathcal {T}|\\ v \in \mathcal {V} &{} \text {set of vessels} \\ vc \in \mathcal {VC} &{} \text {set of vessel classes} \\ j \in \mathcal {J}^P &{} \text {set of production, a.k.a. loading, ports} \\ j \in \mathcal {J}^C &{} \text {set of consumption, a.k.a. discharging, ports} \\ j \in \mathcal {J} &{} \text {set of all ports:}\, \mathcal {J} = \mathcal {J}^P \cup \mathcal {J}^D \\ n \in \mathcal {N} &{} \text {set of regular nodes or port-time pairs:}\, \mathcal {N} = \{ n = (j,t): j \in \mathcal {J}, t \in \mathcal {T} \} \\ n \in \mathcal {N}_{0,T+1} &{} \text {set of all nodes (including a source node}\, n_{_{0}}\,\text {and a sink node}\,{n_{_{T+1}}}) \\ a \in \mathcal {A} &{} \text {set of all arcs} \\ a \in \mathcal {A}^v &{} \text {set of arcs associated with vessel}\, v\, \in \mathcal {V} \\ a \in \mathcal {A}^{vc} &{} \text {set of arcs associated with vessel class}\, vc\, \in \mathcal {VC} \\ a \in \mathcal {FS}_n^{vc} &{} \text {forward star associated with node}\, n = (j,t) \in \mathcal {N}_{s,t}\,\text {and vessel class}\, vc \in \mathcal {VC} \\ a \in \mathcal {RS}_n^{vc} &{} \text {reverse star associated with node}\, n = (j,t) \in \mathcal {N}_{s,t}\,\text {and vessel class}\, vc \in \mathcal {VC} \\ \end{array} $$

Data

$$ \begin{array}{ll} B_j &{} \text {number of berths (berth limit) at port}\, j\, \in \mathcal {J} \\ C_a^{vc} &{} \text {cost for vessel class vc to traverse arc}\, a = ((j_1,t_1),(j_2,t_2)) \in \mathcal {A}^{vc} \\ D_{j,t} &{} \text {number of units produced/consumed at port}\,j \,\in \mathcal {J}\, \text {in period}\, t \in \mathcal {T} \\ \Delta _j &{} \text {an indicator parameter taking value} +1 \text {if}\, j\, \in \mathcal {J}^P \text {and}\, -1 \text {if}\, j \in \mathcal {J}^C \\ &{} ~~~\text {at port}\, j \,\text {from a single vessel in a period} \\ P_{j} &{} \text {penalty for unmet demand/excess inventory at port}\,\,j\, \in \mathcal {J}\,\,\text {in time period}\, t\, \in \mathcal {T} \\ Q^v (Q^{vc}) &{} \text {capacity of vessel}\, v\, \in \mathcal {V}\,\text {(capacity of a vessel in vessel class}\, vc) \\ S_{j,t}^{\min } (S_{j,t}^{\max }) &{} \text {lower bound (capacity) at port}\, j\, \in \mathcal {J}\,\,\text {in time period}\, t \in \mathcal {T} \\ s_{j,0} &{} \text {initial inventory at port}\, j\, \in \mathcal {J} \\ \end{array} $$

Decision Variables

$$ \begin{array}{ll} \alpha _{j,t} &{} \text {(continuous) number of units of unmet demand/excess inventory at port}\, j\, \in \mathcal {J}\,\text {in time period}\, t\, \in \mathcal {T} \\ s_{j,t} &{} \text {(continuous) number of units of inventory at port}\, j\, \in \mathcal {J}\,\text {available\,at\,the}\,end \,\text {of period}\, t\, \\ x_a^{vc} &{} \text {(integer) number of vessels in vessel class}\, vc\, \in \mathcal {VC}\,\,\text {using arc}\,\, a \in \mathcal {A}^{vc}. \\ \end{array} $$

Appendix

3.7 Appendix

Lemma 3.1

Consider the 2-variable mixed-integer linear sets

$$ \mathcal {S}_{\le } = \left\{ (x,y) \in \mathbb {Z}\times \mathbb {R}_+ : x - y \le b \right\} ~. $$

and

$$ \mathcal {S}_{\ge } = \left\{ (x,y) \in \mathbb {Z}\times \mathbb {R}_+ : x + y \ge b \right\} ~. $$

Then, the inequality

$$\begin{aligned} x - \frac{1}{1-f_0} y \le \lfloor b \rfloor \end{aligned}$$
(3.8)

is valid for \(\mathrm{conv}(\mathcal {S}_{\le })\) where \(f_0 := b - \lfloor b \rfloor \). The inequality

$$\begin{aligned} x + \frac{1}{1-f_0} y \ge \lceil b \rceil \end{aligned}$$
(3.9)

is valid for \(\mathrm{conv}(\mathcal {S}_{\ge })\) where \(f_0 := \lceil b \rceil - b\).

Proof

See [16].    \(\square \)

Consider a mixed-integer linear set defined by a single constraint:

$$ \mathcal {S} = \left\{ (\mathbf {x},\mathbf {y}) \in \mathbb {Z}_+^n \times \mathbb {R}_+^p : \mathbf {a}^{\top }\mathbf {x} + \mathbf {g}^{\top }\mathbf {y} \le \mathbf {b} \right\} ~. $$

Proposition 3.1

The Mixed-Integer Rounding (MIR) inequality

$$\begin{aligned} \sum _{j=1}^n \left( \lfloor a_j \rfloor + \frac{(f_j-f_0)^+}{1-f_0} \right) x_j + \frac{1}{1-f_0} \sum _{j:g_j < 0} g_j y_j \le \lfloor b \rfloor \end{aligned}$$
(3.10)

is valid for conv(\(\mathcal {S}\)) where \(f_0 = b - \lfloor b \rfloor \) and \(f_j = a_j - \lfloor a_j \rfloor \).Footnote 1 When the single constraint in \(\mathcal {S}\) is written with a \(\ge \) sign, the MIR inequality becomes

$$\begin{aligned} \sum _{j=1}^n \left( \lceil a_j \rceil - \frac{(f_j-f_0)^+}{1-f_0} \right) x_j + \frac{1}{1-f_0} \sum _{j:g_j > 0} g_j y_j \ge \lceil b \rceil \end{aligned}$$
(3.11)

where \(f_0 = \lceil b \rceil - b\) and \(f_j = \lceil a_j \rceil - a_j\).

Proof

Since the proof of the first case with \(\mathcal {S}\) expressed with a \(\le \) sign is given in [16], we prove the second case. Note that \(a_j = \lceil a_j \rceil - f_j = \lfloor a_j \rfloor + (1-f_j)\). Relax the constraint \(\sum _{j=1}^n a_j x_j + \sum _{j=1}^p g_j y_j \ge b\) to

$$\begin{aligned} \sum _{j:f_j \le f_0} \lceil a_j \rceil x_j + \sum _{j:f_j> f_0} a_j x_j + \sum _{j:g_j > 0} g_j y_j \ge b~. \end{aligned}$$
(3.12)

Here, we have thrown out the continuous variables with non-positive coefficients and we have partitioned the integer variables based on the value of their fractional part \(f_j\) being greater than or less than the fractional part \(f_0\) of the right-hand side b. Next, rewrite the left hand side of (3.12) as \(w + z \ge b\) where w and z are defined as

$$\begin{aligned} w:= & {} \sum _{j:f_j \le f_0} \lceil a_j \rceil x_j + \sum _{j:f_j> f_0} \lfloor a_j \rfloor x_j~, \text{ and } \\ z:= & {} \sum _{j:g_j> 0} g_j y_j + \sum _{j:f_j > f_0} (1 - f_j) x_j~. \end{aligned}$$

Since \(w \in \mathbb {Z}\), \(z \in \mathbb {R}_+\), and \(w + z \ge b\), we can apply inequality (3.9) from Lemma 3.1. This gives \(w + \frac{1}{1-f_0} z \ge \lceil b \rceil \) or

$$ \sum _{j:f_j \le f_0} \lceil a_j \rceil x_j + \sum _{j:f_j> f_0} \left( \lfloor a_j \rfloor + \frac{1 - f_j}{1 - f_0} \right) x_j + \frac{1}{1 - f_0}\sum _{j:g_j > 0} g_j y_j \ge \lceil b \rceil ~. $$

Note that \(\lfloor a_j \rfloor + \frac{1 - f_j}{1 - f_0} = \lceil a_j \rceil - \frac{f_j-f_0}{1-f_0}\) for all \(j \in \{1,\dots ,n\}:f_j > 0\). Note also that for those integer variables j whose fractional part \(f_j\) is greater than the fractional part \(f_0\) of the right-hand side, the relaxed coefficient \(\lceil a_j \rceil - \frac{(f_j-f_0)^+}{1-f_0}\) in the MIR cut (3.11) is stronger than for those j with \(f_j \le f_0\).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Papageorgiou, D.J., Cheon, MS., Harwood, S., Trespalacios, F., Nemhauser, G.L. (2018). Recent Progress Using Matheuristics for Strategic Maritime Inventory Routing. In: Konstantopoulos, C., Pantziou, G. (eds) Modeling, Computing and Data Handling Methodologies for Maritime Transportation. Intelligent Systems Reference Library, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-61801-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61801-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61800-5

  • Online ISBN: 978-3-319-61801-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics