Skip to main content

Engineered Nanoparticles in the Environments: Interactions with Microbial Systems and Microbial Activity

  • Chapter
  • First Online:
Microbial Ecotoxicology

Abstract

There has been a remarkable development of nanotechnology and growing interest in the application of engineered nanoparticles in several products over the last decade. Their use in several consumer products have been associated with increased concern for human and environmental health due to the potential toxicological implications of engineered nanoparticles (ENPs) released into the environment which could have adverse effect on bacteria-dependent processes. Despite the great research attention commanded by ENPs effect on biological systems in recent years, there is still a considerable challenge in the analytical procedures and evaluation. ENPs exert their antimicrobial effect through a wide range of mechanisms including the formation of reactive oxygen species, disruption of microbial physiology and metabolic processes although there is increasing evidence to suggest that ENPs could also augment microbial-mediated processes in the ecosystem. Although little is known about the environmental fate and transport of ENPs, wastewater would serve as a sink for most of the nano-enabled waste and by-products. To date, nano-ecotoxicological studies report contrasting findings on bacterial inhibition and/or stimulation, survival and death which are dose- and species-specific and analytical protocol-dependent. Further to this, studies are largely influenced by the exposure duration, the type and the composition of the environmental matrix tested, and the reactive properties of the ENPs. Without caution, the interpretation of ENPs ecotoxicological effect on microbial activity, community structure, composition and diversity by different analytical protocols can be true but misleading because ENPs are differentially toxic to diverse microorganisms in pure and mixed cultures. Therefore, the development of a general and holistic guideline for microbial nano-ecotoxicity evaluation can at best be described as work in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  PubMed  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipeiro P (2013) Toxicity of metal oxides (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Article  CAS  Google Scholar 

  • Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10:2543–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baptista MS, Miller RJ, Halewood ER, Hanna SK, Almeida CMR, Vasconcelos VM, Keller AA, Lenihan HS (2015) Impacts of silver nanoparticles on a natural estuarine plankton community. Environ Sci Technol 49:12968–12974

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemos 75:850–857

    Article  CAS  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2012) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–864

    Article  PubMed  CAS  Google Scholar 

  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—Nanoparticle or silver ions? Toxicol Lett 202:286–292

    Article  CAS  Google Scholar 

  • Benoit R, Wilkinson KJ, Sauve S (2013) Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J 7:75

    Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  PubMed  Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  • Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnson W, Anderson AJ (2012) Soil component mitigates the antibacterial effects of silver nanoparticles towards a beneficial soil bacteria, Pseudomonas chlororaphis 06. Sci Tot Environ 429:215–222

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolytic solutions. J Colloid Interface Sci 309:126–134

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effect of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  PubMed  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8(2):e57189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764

    Article  CAS  Google Scholar 

  • Crane M, Newman MC (2000) What level of effect is a no observed effect? Environ Toxicol Chem 19:516–519

    Google Scholar 

  • Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437

    Article  CAS  PubMed  Google Scholar 

  • Cullen LG, Tilson EL, Mitchell GR, Collins CD, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675–1682

    Article  CAS  PubMed  Google Scholar 

  • Dale AL, Casman EA, Lowry GV, Lead JR, Viparelli E, Baalousha M (2015) Modeling nanomaterial environmental fate in aquatic systems. Environ Sci Technol 49:2587–2593

    Article  CAS  PubMed  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceutical and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(6):907–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin TM (2006) Textbook of biochemistry with clinical correlations. Wiley-Liss, Hoboken, 574 pp

    Google Scholar 

  • Dimkpa CO, Calder A, Gajjar P, Merugu S, Huang W, Britt DW, McLean JE, Johnson WP, Anderson AJ (2011a) Interaction of silver nanoparticles with environmentally beneficial bacterium Pseudomonas chlororaphis. J Hazard Mater 188:428–435

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011b) Response of a soil bacterium, Pseudomonas chlororaphis 06 to commercial metal oxide nanoparticles compared to responses to metal ions. Environ Pollut 159:1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49:575–588

    CAS  PubMed  Google Scholar 

  • Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Marcato PD, De Conti R, Alves OL, Costab FTM, Brocchib M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Article  Google Scholar 

  • Durenkamp M, Pawlett M, Ritz K, Harris JA, Neal AL, McGrath SP (2016) Nanoparticles within WWTP sludge have minimal impact on leachate quality and soil microbial community structure and function. Environ Pollut 211:399–405

    Article  CAS  PubMed  Google Scholar 

  • Eduok S (2013) Evaluation of the impact of engineered nanoparticles on the operation of wastewater treatment plant. PhD thesis, Cranfield University, 197 pp. http://dspace.lib.cranfield.ac.uk/handle/1826/8261

  • Eduok S, Coulon F (2017) Microbiological toxicity of nanoparticles, Chap 6. In: Busquets R (ed) Emerging nanotechnologies in food science, 1st edn. Elsevier, Amsterdam. ISBN 9780323429801 (in press)

    Google Scholar 

  • Eduok S, Martin B, Nocker A, Villa R, Jefferson B, Coulon F (2013) Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: current status and challenges. Ecotox Environ Safe 95:1–9

    Article  CAS  Google Scholar 

  • Eduok S, Hendry C, Ferguson R, Martin B, Villa R, Jefferson B, Coulon F (2015) Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microb Ecol 91:1–9; fiv082

    Google Scholar 

  • El-Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  CAS  PubMed  Google Scholar 

  • European Environmental Agency, EEA (2013) EEA annual report 2013 and environmental statement. Technical report No 12/2013. http://www.eea.europa.eu/publications/air-quality-in-europe-2013. Accessed Sept 2013

  • Fajardo C, Oritz LT, Rodriguez-Membibre ML, Nande M, Lobo MC, Martin M (2011) Assessing the impact of zero-valent iron (ZVI) nanoparticles on soil microbial structure and functionality: a molecular approach. Chemos 86:802–808

    Article  CAS  Google Scholar 

  • Febrega J, Zhang R, Renshaw JC, Liu W-T, Lead JR (2011) Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere 85:961–966

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE 8(12):e84441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galindo TPS, Pereira R, Freitas AC, Santos-Rocha TAP, Rasteiro MG, Antunes F, Rodrigues D, Soares AMVM, Gonçalves F, Duarte AC, Lopes I (2013) Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi. Sci Tot Environ 458–460:290–299

    Article  CAS  Google Scholar 

  • Garcia A, Delgado L, Tora JA, Casals E, Gonzalez E, Puntes V, Font X, Carrera J, Sanchez A (2012) Effects of cerium oxide, titanium dioxide, silver and gold nanoparticles on the activity of microbial communities intended for wastewater treatment. J Hazard Mater 199–200:64–72

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Tech 45:1659–1664

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Priester JH, Van De Werfhorst LC, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ Sci Technol 47:14411–14417

    Article  CAS  PubMed  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Gupta IR, Anderson AJ, Rai M (2015) Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizobium bacterium responsible for plant protection and bioremediation. J Hazard Mater 286:48–54

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez M, Extebarria J, de las Fuentes L (2002) Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Res 36:919–924

    Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011a) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011b) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubour-guier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Google Scholar 

  • Hennebert P, Avellan A, Yan J, Aguerre-Cheriol O (2013) Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manage 33:1870–1881

    Article  CAS  Google Scholar 

  • Hernandez-Sierra J, Ruiz F, Pena D, Martinez-Gutierrez F, Martinez AE, Guillen AJ, Tapia-Perez H, Castanon GM (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed-Nanotechnol 4:237–240

    Article  CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  PubMed  Google Scholar 

  • Hsueh Y-H, Lin K-S, Ke W-J, Hsieh C-T, Chiang C-L, Tzou D-Y, Liu S-T (2015) The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS ONE 10(12):e0144306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S, Duffy B, Jaiswal AK, Stobie N, McHale P (2010) Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. Int J Antimicrob Agent 36:280–283

    Article  CAS  Google Scholar 

  • Jiang C, Xu X, Meghary M, Naidu R, Chen Z (2015) Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron. Sci Tot Environ 530–531:241–246

    Article  CAS  Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli 0157:H7. J Food Sci 74:46–52

    Article  CAS  Google Scholar 

  • Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and silver nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Joshi N, Ngwenya BT, French CE (2012) Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J Hazard Mater 241–242:363–370

    Article  PubMed  CAS  Google Scholar 

  • Judy JD, Kirby JK, Creamer C, McLaughlin MJ, Fubiger C, Wright C, Cavagnaro TR, Bertsch PM (2015) Effect of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities on biosolid-amended soil. Environ Pollut 206:256–263

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Tikoo K (2013) Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles. Food Chem Toxicol 51:1–14

    Article  CAS  PubMed  Google Scholar 

  • Keller AA, Mcferran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  • Khan S, Mukherje A, Chandrasekaran N (2011) Silver nanoparticle tolerant bacterium from sewage. J Environ Sci 32:346–352

    Article  CAS  Google Scholar 

  • Kim KT, Klaine SJ, Lin S, Ke PC, Kim SD (2010) Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Environ Toxicol Chem 29:122–126

    Article  CAS  PubMed  Google Scholar 

  • Kim H-H, Kim MS, Kim H-E, Lee H-L, Jang M-H, Choi J, Hwang Y, Lee C (2017) Nanoparticulate zero-valent iron coupled with polyphosphate: the sequential redox treatment of organic compounds and its stability and bacterial toxicity. Environ Sci Nano 4:396–405. doi:10.1039/c6en00502k

    Article  CAS  Google Scholar 

  • Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763

    Article  CAS  PubMed  Google Scholar 

  • Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44:4105–4114

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822

    Article  CAS  PubMed  Google Scholar 

  • Lacoanet HF, Wiesner MR (2004) Velocity effect on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382

    Article  CAS  Google Scholar 

  • Lee J-H, Kim Y-G, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factors production. Microbiol Res 160:888–896

    Article  CAS  Google Scholar 

  • Levard C, Reinsch BC, Michael FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation process of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:526–5266

    Article  CAS  Google Scholar 

  • Li F, Wu J, Qin Q, Li Z, Huang X (2010) Controllable synthesis, optical and photocatalytical properties of CuS nanomaterials with hierarchical structures. Powder Technol 198:267–274

    Article  CAS  Google Scholar 

  • Li M, Lin D, Zhu L (2013) Effect of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Das A, Hu Z (2010) Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res 44:5432–5438

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C, and CHxCHx). Environ Sci Technol 41:4465–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  CAS  PubMed  Google Scholar 

  • Lui R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Tot Environ 514:131–139

    Article  CAS  Google Scholar 

  • Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughes JB (2005) Bacterial cell association antimicrobial activity of a C-60 water suspension. Environ Toxicol Chem 24:2757–2762

    Article  CAS  PubMed  Google Scholar 

  • Mach R (2004) Nanoscale treatment of groundwater. Federal remedial technology roundtable: naval facilities engineering command. Available at https://frtr.gov/pdf/meetings/l–mach_09jun04.pdf. Accessed Feb 2017

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: towards an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKee MS, Filser J (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci: Nano 3:506–533

    Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of nanosilver on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Safety 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E (2012) The complexity of nanoparticles dissolution and its importance in nanotoxicological studies. Sci Tot Environ 438:225–232

    Article  CAS  Google Scholar 

  • Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterials aging and transformation through the life cycle of nano-enhanced products. Environ Int 77:132–147

    Article  CAS  PubMed  Google Scholar 

  • Moll J, Gogos A, Bucheli TD, Widmer F, van der Heijden MGA (2015) Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol 14:36

    Article  CAS  Google Scholar 

  • Moll J, Okupnik A, Gogos A, Knauer K, Bucheli TD, van der Heijden MGA, Widmer F (2016) Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont. PLoS ONE 11(5):e0155111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore MN (2006) So nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  PubMed  Google Scholar 

  • Moore DRJ, Caux P-Y (1997) Estimating low toxic effects. Environ Toxicol Chem 16(4):784–801

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modelling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172. doi:10.3389/fpls.2016.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):378–386

    Article  CAS  Google Scholar 

  • Newman MC (2008) What exactly are you inferring? A closer look at hypothesis testing. Environ Toxicol Chem 27:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F, Gonçalves F, Soares AMVM, Cunha A, Almeida A, Gomes NNCM, Ruth P (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Tot Environ 424:344–350

    Article  CAS  Google Scholar 

  • Noppert F, Van der Hoeven N, Leopold A (1994) How to measure no effect? Towards a new measure of chronic toxicity in ecotoxicology. Netherlands Working Group on Statistics and Ecotoxicology, Delft, The Netherlands

    Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behaviour and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Krug HF, Height M (2010) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183

    Article  CAS  Google Scholar 

  • Ortega-Calvo JJ, Sanchez CJ, Pratarolo P, Pullin H, Scott TB, Thompson IP (2016) Tactic response of bacteria to zero-valent iron nanoparticles. Environ Pollut 213:438–445

    Article  CAS  PubMed  Google Scholar 

  • Oyelami AO, Semple KT (2015) Impact of carbon nanomaterials on microbial activity in soil. Soil Biol Biochem 86:172–180

    Article  CAS  Google Scholar 

  • Padrova K, Mat’atkova O, Sikova M, Fuzik T, Masak J, Cejkova A, Jirku V (2016) Mitigation of Fe° nanoparticles toxicity to Trichosporon cutaneum by humic substances. New Biotechnol 33:144–152

    Google Scholar 

  • Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B (2010) Mutagenicity evaluation of metal oxide nanoparticles by bacterial reverse mutation assay. Chemosphere 79:113–116

    Article  CAS  PubMed  Google Scholar 

  • Parisi C, Viani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Parvez S, Venkataraman C, Mukheriji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol Appl Sci 3:71–84

    Google Scholar 

  • Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira R, Rocha-Santos TAP, Antunes FE, Rasteiro MG, Rubeiro R, Goncalves F, Soares AMVM, Lopes I (2011) Screening evolution of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic and inorganic nanoparticles: the role of ageing. J Hazard Mater 194:345–354

    Article  CAS  PubMed  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  • Radniecki TS, Stankus DP, Neigh A, Nason JA, Semprini L (2011) Influence of liberated silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere 85:43–49

    Article  CAS  PubMed  Google Scholar 

  • Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E, Spurgeon D, Svendsen C (2016) Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res 23:4120–4128

    Google Scholar 

  • Ronavari A, Balazs M, Tolmacsov P, Molnar C, Kiss I, Kukovecz A, Konya Z (2016) Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacterium. Water Res 95:165–173

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE 7(3):e34197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaumann GE, Philippe A, Bundschuh M, Metrevelia G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel H-J (2015) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Tot Environ 535:3–19

    Article  CAS  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92

    Article  CAS  Google Scholar 

  • Sharma D, Rajput J, Kaith BS, Kaur M, Sharma S (2010) Synthesis of ZnO nanoparticles and study of their antimicrobial and antifungal properties. Thin Solid Films 519:1224–1229

    Article  CAS  Google Scholar 

  • Sheng Z, Liu Y (2011) Effect of silver nanoparticles on wastewater biofilms. Water Res 45:6039–6050

    Article  CAS  PubMed  Google Scholar 

  • Shin YJ, Kwak JI, An Y-J (2012) Evidence for the inhibitory effect of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529

    Article  CAS  PubMed  Google Scholar 

  • Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197

    Article  CAS  PubMed  Google Scholar 

  • Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effect of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22

    Article  CAS  Google Scholar 

  • Simonin M, Guyonnet JP, Martins JMF, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 285:529–535

    Article  CAS  Google Scholar 

  • Simonin M, Martins JMF, Uzu G, Vince E, Richaume A (2016) Combined study of titanium dioxide nanoparticle transport and toxicity on microbial nitrifying communities under single and repeated exposures in soil columns. Environ Sci Technol 50:10693–10699

    Article  CAS  PubMed  Google Scholar 

  • Simonin M, Martins JM, Le Roux X, Uzu G, Calas A, Richaume A (2017) Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: lack of classical dose-response relationships. Nanotoxicology. doi:10.1080/17435390.2017.1290845

    PubMed  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Siti Khadijah Mohd Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Google Scholar 

  • Soderberg TA, Sunzel B, Holm S, Elmros T, Hallmans G, Sjoberg S (1990) Antibacterial effect of zinc oxide in vitro. Scand J Plast Reconstr Surg Hand Surg 24:193–197

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  CAS  PubMed  Google Scholar 

  • Strigul N, Vaccaria L, Galduna C, Waznea M, Liua X, Christodoulatosa C, Jasinkiewiczb K (2009) Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination 248:771–782

    Article  CAS  Google Scholar 

  • Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ (2013) Nanoscale zerovalent iron alters soil bacteria community structure and inhibits chloroaromatic biodegradation potential in Arochlor 1242-contaminated soil. Environ Pollut 173:36–46

    Article  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotech 6:1769–1780

    Article  CAS  Google Scholar 

  • Wang C, Liu L-L, Zhang A-T, Xie P, Lu J-J, Zou X-T (2012) Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88. African J Biotechnol 11:10248–10254

    Article  CAS  Google Scholar 

  • Wang J, Yao H, Hi X (2014) Cooperative entry of nanoparticles into the cell. J Mech Phys Solids 73:151–165

    Google Scholar 

  • Wang F, Yao J, Liu H, Liu R, Chen H, Yi Z, Yu Q, Ma L, Xing B (2015) Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in aquatic environment. J Hazard Mater 292:137–145

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Menzies NW, Dennis PG, Guo J, Forstner C, Sekine R, Lombi E, Kappen P, Bertsch PM, Kopittke PM (2016a) Silver nanoparticles entering soils via the wastewater–sludge–soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability. Environ Sci Technol 50:8274–8281

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Liu X, Shi Z, Tong R, Adam CA, Shi X (2016b) Arbuscular mycorrhizae alleviates negative effects of zinc oxide nanoparticles and zinc accumulation in maize plant—a soil microcosm experiment. Chemosphere 147:88–97

    Article  CAS  PubMed  Google Scholar 

  • Weber CI, Peltier WH, Norberg-King TJ, Horning WB, Kessler FA, Menkedick JR, Neiheisel TW, Lewis PA, Klemm DJ, Pickering QH, Robinson EL, Lazorchak JM, Wymer LJ, Freyberg RW (1989) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, EPA/600/4-89/001. Environmental Monitoring Systems Laboratory, Environmental Protection Agency, Cincinnati, OH, 315 pp

    Google Scholar 

  • Weisner MR, Lowry GV, Jones KL, Hochella MF, Di Guilio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing exposure, risk and ecological implication of nanomaterials. Environ Sci Technol 43:6458–6462

    Article  CAS  Google Scholar 

  • Wen-Ru L, Xiao-Bao X, Qing-Shan S, Hai-Yan Z, You-Sheng O-Y, Yi-Ben C (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  Google Scholar 

  • Whitley AR, Levard C, Oostveen E, Bertsch PM, Matocha CJ, von der Kammerd F, Unrine JM (2013) Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environ Pollut 182:141–149

    Article  CAS  PubMed  Google Scholar 

  • Wigger H, Hackmann S, Zimmermann T, Koser J, Thoming J, von Gleich A (2015) Influences of use activities and waste management on environmental releases of engineered nanomaterials. Sci Tot Environ 535:160–171

    Article  CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, De Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  • Woodrow Wilson Database (2016) The project on emerging nanotechnologies: consumer products inventory. Woodrow Wilson International Centre for Scholars, Washington DC. (http://www.nanoproduct.org/inventories/consumer/. Accessed 11 Nov 2016

  • Wu B, Zhuang W-R, Sahu M, Bismas P, Tang YJ (2011) Cu-doped TiO2 nanoparticles enhance survival of Shewanella oneidensis MR-1 under ultraviolet (UV) light exposure. Sci Tot Environ 409:4635–4639

    Article  CAS  Google Scholar 

  • Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    Article  CAS  Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  PubMed  Google Scholar 

  • Yuan Z, Li J, Cui L, Xu B, Zhang H, Yu C-P (2013) Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 90:1404–1411

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Hunting ER, Wouters M, Peijnenburg WJGM, Vijver MG (2016) Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. Front Microbiol 7:1123–1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Newton B, Lewis E, Fu PP, Kafoury R, Ray PC, Yu H (2015) Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability. Toxicol In Vitro 29:762–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Coulon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eduok, S., Coulon, F. (2017). Engineered Nanoparticles in the Environments: Interactions with Microbial Systems and Microbial Activity. In: Cravo-Laureau, C., Cagnon, C., Lauga, B., Duran, R. (eds) Microbial Ecotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-61795-4_5

Download citation

Publish with us

Policies and ethics