Skip to main content

Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix

  • Chapter
  • First Online:
Constraint Programming and Decision Making: Theory and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 100))

Abstract

We consider a symmetric matrix, the entries of which depend linearly on some parameters. The domains of the parameters are compact real intervals. We investigate the problem of checking whether for each (or some) setting of the parameters, the matrix is positive definite (or positive semidefinite). We state a characterization in the form of equivalent conditions, and also propose some computationally cheap sufficient / necessary conditions. Our results extend the classical results on positive (semi-)definiteness of interval matrices. They may be useful for checking convexity or non-convexity in global optimization methods based on branch and bound framework and using interval techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Białas, S., Garloff, J.: Intervals of P-matrices and related matrices. Linear Algebra Appl. 58, 33–41 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)

    MATH  Google Scholar 

  3. Floudas, C.A.: Deterministic Global Optimization. Theory, Methods and Application. In: Nonconvex Optimization and its Applications, vol. 37. Kluwer, Dordrecht (2000)

    Google Scholar 

  4. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  6. Gärtner, B., Matoušek, J.: Approximation Algorithms and Semidefinite Programming. Springer, Berlin Heidelberg (2012)

    Book  MATH  Google Scholar 

  7. Hansen, E.R., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  8. Hendrix, E.M.T., Gazdag-Tóth, B.: Introduction to nonlinear and global optimization. In: Optimization and Its Applications, vol. 37. Springer, New York (2010)

    Google Scholar 

  9. Hertz, D.: The extreme eigenvalues and stability of real symmetric interval matrices. IEEE Trans. Autom. Control 37(4), 532–535 (1992)

    Article  MathSciNet  Google Scholar 

  10. Hladík, M.: Enclosures for the solution set of parametric interval linear systems. Int. J. Appl. Math. Comput. Sci. 22(3), 561–574 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hladík, M.: Bounds on eigenvalues of real and complex interval matrices. Appl. Math. Comput. 219(10), 5584–5591 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Hladík, M.: On the efficient Gerschgorin inclusion usage in the global optimization \(\alpha \)BB method. J. Glob. Optim. 61(2), 235–253 (2015)

    Google Scholar 

  13. Hladík, M., Daney, D., Tsigaridas, E.: Bounds on real eigenvalues and singular values of interval matrices. SIAM J. Matrix Anal. Appl. 31(4), 2116–2129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jaulin, L., Henrion, D.: Contracting optimally an interval matrix without loosing any positive semi-definite matrix is a tractable problem. Reliab. Comput. 11(1), 1–17 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  16. Kolev, L.V.: Outer interval solution of the eigenvalue problem under general form parametric dependencies. Reliab. Comput. 12(2), 121–140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kolev, L.V.: Determining the positive definiteness margin of interval matrices. Reliab. Comput. 13(6), 445–466 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolev, L.V.: Eigenvalue range determination for interval and parametric matrices. Int. J. Circuit Theory Appl. 38(10), 1027–1061 (2010)

    Article  MATH  Google Scholar 

  19. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer (1998)

    Google Scholar 

  20. Leng, H.: Real eigenvalue bounds of standard and generalized real interval eigenvalue problems. Appl. Math. Comput. 232, 164–171 (2014)

    MathSciNet  Google Scholar 

  21. Liu, W.: Necessary and sufficient conditions for the positive definiteness and stability of symmetric interval matrices. In: Proceedings of the 21st Annual International Conference on Chinese Control and Decision Conference, CCDC 2009, Piscataway, NJ, USA, pp. 4574–4579. IEEE Press (2009)

    Google Scholar 

  22. Matcovschi, M.H., Pastravanu, O., Voicu, M.: Right bounds for eigenvalue ranges of interval matrices - estimation principles vs global optimization. Control Eng. Appl. Inform. 14(1), 3–13 (2012)

    Google Scholar 

  23. Mayer, G.: An Oettli-Prager-like theorem for the symmetric solution set and for related solution sets. SIAM J. Matrix Anal. Appl. 33(3), 979–999 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  25. Mönnigmann, M.: Fast calculation of spectral bounds for hessian matrices on hyperrectangles. SIAM J. Matrix Anal. Appl. 32(4), 1351–1366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  27. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13, 271–369 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Poljak, S., Rohn, J.: Checking robust nonsingularity is NP-hard. Math. Control Signals Syst. 6(1), 1–9 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Popova, E.D.: Strong regularity of parametric interval matrices. In: Dimovski, I. et al. (eds.) Mathematics and Education in Mathematics, Proceedings of the 33rd Spring Conference of the Union of Bulgarian Mathematicians, Borovets, Bulgaria, pp. 446–451. BAS (2004)

    Google Scholar 

  30. Popova, E.D.: Explicit description of AE solution sets for parametric linear systems. SIAM J. Matrix Anal. Appl. 33(4), 1172–1189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Popova, E.D., Hladík, M.: Outer enclosures to the parametric AE solution set. Soft. Comput. 17(8), 1403–1414 (2013)

    Article  MATH  Google Scholar 

  32. Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval matrices. SIAM J. Matrix Anal. Appl. 20(2), 437–445 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rohn, J.: Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 15(1), 175–184 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rohn, J.: VERSOFT: Verification software in MATLAB/INTLAB. Version 10 (2009)

    Google Scholar 

  35. Rohn, J.: A handbook of results on interval linear problems. Technical Report No. 1163, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2012)

    Google Scholar 

  36. Rohn, J.: A manual of results on interval linear problems. Technical Report No. 1164, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2012)

    Google Scholar 

  37. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  38. Shao, J., Hou, X.: Positive definiteness of Hermitian interval matrices. Linear Algebra Appl. 432(4), 970–979 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Skjäl, A., Westerlund, T.: New methods for calculating \(\alpha BB\)-type underestimators. J. Glob. Optim. 58(3), 411–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zimmer, M., Krämer, W., Popova, E.D.: Solvers for the verified solution of parametric linear systems. Comput. 94(2–4), 109–123 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was supported by the Czech Science Foundation Grant P402-13-10660S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hladík, M. (2018). Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix . In: Ceberio, M., Kreinovich, V. (eds) Constraint Programming and Decision Making: Theory and Applications. Studies in Systems, Decision and Control, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-61753-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61753-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61752-7

  • Online ISBN: 978-3-319-61753-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics