Skip to main content

Analysis Approaches for Fungi in Indoor Environmental Assessments

  • Chapter
  • First Online:
Exposure to Microbiological Agents in Indoor and Occupational Environments

Abstract

The challenge of fungal measurements in indoor environments is complex. Almost all studies that have used several methods for the assessment of fungal exposure have only observed moderate or weak correlation between them. These variations can be explained by the fungal life cycle with differences in spore release and the variation in the characteristics of spores of different species, and with differences in the target molecules used by the various fungal exposure assessment methods. Therefore, the use of different analysis methods will provide a different perspective on the stages of fungal growth and quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RI, Amend AS, Taylor JW et al (2013a) A unique signal distorts the perception of species richness and composition in high-throughput sequencing surveys of microbial communities: a case study of fungi in indoor dust. Microb Ecol 66(4):735–741

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams RI, Bhangar S, Pasut W et al (2015) Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes. PLoS One 10(5):e0128022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams RI, Miletto M, Taylor JW et al (2013b) Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J 7(7):1262–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams RI, Miletto M, Taylor JW et al (2013c) The diversity and distribution of fungi on residential surfaces. PLoS One 8(11):e78866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19(24):5555–5565

    Article  CAS  PubMed  Google Scholar 

  • Bauer H, Schueller E, Weinke G et al (2008) Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos Environ 42(22):5542–5549

    Article  CAS  Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232(1-2):147–154

    Article  CAS  Google Scholar 

  • Burge H, Otten J, Fungi JM et al (1999) Bioaerosols: assessment and control. In: Anonymous American Conference of Governmental Industrial Hygienists (ACGIH), vol 19., p 1–13

    Google Scholar 

  • Burge HA (1995) Bioaerosols. CRC Press

    Google Scholar 

  • Buttner MP, Cruz P, Stetzenbach LD et al (2007) Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR. Appl Environ Microbiol 73(11):3505–3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao HJ, Milton DK, Schwartz J et al (2002) Dustborne fungi in large office buildings. Mycopathologia 154(2):93–106

    Article  PubMed  Google Scholar 

  • Cox MJ, Cookson WO, Moffatt MF (2013) Sequencing the human microbiome in health and disease. Hum Mol Genet 22(R1):R88–94

    Article  CAS  PubMed  Google Scholar 

  • Coz E, Artíñano B, Clark LM et al (2010) Characterization of fine primary biogenic organic aerosol in an urban area in the northeastern United States. Atmos Environ 44(32):3952–3962

    Article  CAS  Google Scholar 

  • Dacarro C, Picco A, Grisoli P et al (2003) Determination of aerial microbiological contamination in scholastic sports environments. J Appl Microbiol 95(5):904–912

    Article  CAS  PubMed  Google Scholar 

  • Dannemiller KC, Gent JF, Leaderer BP et al (2016a) Indoor microbial communities: influence on asthma severity in atopic and nonatopic children. J Allergy Clin Immunol 138(1):76–83-e1

    Article  PubMed  PubMed Central  Google Scholar 

  • Dannemiller KC, Mendell MJ, Macher JM et al (2014a) Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24(3):236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannemiller KC, Reeves D, Bibby K et al (2014b) Fungal High-throughput Taxonomic Identification tool for use with Next-Generation Sequencing (FHiTINGS). J Basic Microbiol 54(4):315–321

    Article  CAS  PubMed  Google Scholar 

  • Dannemiller KC, Gent JF, Leaderer BP et al (2016b) Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air 26(2):179–192

    Article  CAS  PubMed  Google Scholar 

  • Davitt K, Song Y, Patterson III W et al (2005) 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. Opt Express 13(23):9548–9555

    Article  CAS  PubMed  Google Scholar 

  • De Carolis E, Posteraro B, Lass-Flörl C et al (2012) Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 18(5):475–484

    Article  PubMed  Google Scholar 

  • Després V, Nowoisky J, Klose M et al (2007) Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4(6):1127–1141

    Article  Google Scholar 

  • Dillon HK, Boling DK, Miller JD (2007) Comparison of detection methods for Aspergillus fumigatus in environmental air samples in an occupational environment. J Occup Environ Hyg 4(7):509–513

    Article  CAS  PubMed  Google Scholar 

  • Douwes J, van der Sluis B, Doekes G et al (1999) Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J Allergy Clin Immunol 103:494–500

    Article  CAS  PubMed  Google Scholar 

  • Douwes J (2005) (1→3)-β-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 15(3):160–169

    Article  CAS  PubMed  Google Scholar 

  • Douwes J, Doekes G, Heinrich J et al (1998) Endotoxin and β (1 → 3)-Glucan in House Dust and the Relation with Home Characteristics: A Pilot Study in 25 German Houses. Indoor Air 8(4):255–263

    Article  CAS  Google Scholar 

  • Douwes J, Zuidhof A, Doekes G et al (2000) (1 → 3)-β-D-glucan and endotoxin in house dust and peak flow variability in children. Am J Resp Crit Care Med 162(4):1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Douwes J, Doekes G, Montijn R et al (1996) Measurement of beta (1→3)-glucans in occupational and home environments with an inhibition enzyme immunoassay. Appl Environ Microbiol 62(9):3176–3182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douwes J, Thorne P, Pearce N et al (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200

    CAS  PubMed  Google Scholar 

  • Eduard W, Sandven P, Johansen BV et al (1988) Identification and quantification of mould spores by scanning electron microscopy (SEM): analysis of filter samples collected in Norwegian saw mills. Ann Occup Hyg 32(inhaled particles VI):447–455

    Google Scholar 

  • Eduard W, Halstensen AS (2009) Quantitative exposure assessment of organic dust. Scand J Work Environ Health. Supplement (7):30.

    Google Scholar 

  • Elbert W, Taylor P, Andreae M et al (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7(17):4569–4588

    Article  CAS  Google Scholar 

  • Elston DM (2001) Fluorescence of fungi in superficial and deep fungal infections. BMC Microbiol 1:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettenauer J, Piñar G, Tafer H et al (2014) Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene. Front Microbiol 5.

    Google Scholar 

  • Ettenauer JD, Pinar G, Lopandic K et al (2012) Microbes on building materials – evaluation of DNA extraction protocols as common basis for molecular analysis. Sci Total Environ 439:44–53

    Article  CAS  PubMed  Google Scholar 

  • Foto M, Vrijmoed L, Miller J et al (2005) A comparison of airborne ergosterol, glucan and Air-O-Cell data in relation to physical assessments of mold damage and some other parameters. Indoor Air 15(4):257–266

    Article  CAS  PubMed  Google Scholar 

  • Foto M, Plett J, Berghout J et al (2004) Modification of the Limulus amebocyte lysate assay for the analysis of glucan in indoor environments. Anal Bioanal Chem 379(1):156–162

    Article  CAS  PubMed  Google Scholar 

  • Frohlich-Nowoisky J, Pickersgill DA, Despres VR et al (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 106(31):12814–12819

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabey A, Gallagher M, Whitehead J et al (2010) Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10(10):4453–4466

    Article  CAS  Google Scholar 

  • Ganzlin M, Marose S, Lu X et al (2007) In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures. J Biotechnol 132(4):461–468

    Article  CAS  PubMed  Google Scholar 

  • Gehring U, Heinrich J, Hoek G et al (2007) Bacteria and mould components in house dust and children’s allergic sensitisation. Eur Respir J 29(6):1144–1153

    Article  CAS  PubMed  Google Scholar 

  • Goebes MD, Hildemann LM, Kujundzic E et al (2007) Real-time PCR for detection of the Aspergillus genus. J Environ Monitor 9(6):599–609

    Article  CAS  Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2004) Microbial diversity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J Separ Sci 27(3):174–180

    Article  CAS  Google Scholar 

  • Górny RL, Reponen T, Willeke K et al (2002) Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68(7):3522–3531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green BJ, Millecchia LL, Blachere FM et al (2006) Dual fluorescent halogen immunoassay for bioaerosols using confocal microscopy. Anal Biochem 354(1):151–153

    Article  CAS  PubMed  Google Scholar 

  • Green BJ, Schmechel D, Summerbell RC (2011) Aerosolized fungal fragments. In: Anonymous fundamentals of mold growth in indoor environments and strategies for healthy living. Springer, p. 211–243

    Google Scholar 

  • Green BJ, Sercombe JK, Tovey ER (2005) Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 115(5):1043–1048

    Article  PubMed  Google Scholar 

  • Gutarowska B, Piotrowska M (2007) Methods of mycological analysis in buildings. Build Environ 42(4):1843–1850

    Article  Google Scholar 

  • Hairston PP, Ho J, Quant FR (1997) Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J Aerosol Sci 28(3):471–482

    Article  CAS  PubMed  Google Scholar 

  • Haugland RA, Varma M, Wymer LJ et al (2004) Quantitative PCR analysis of selected Aspergillus, Penicillium and Paecilomyces Species. Syst Appl Microbiol 27(2):198–210

    Article  CAS  PubMed  Google Scholar 

  • Healy D, Huffman J, O’Connor D et al (2014) Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques. Atmos Chem Phys 14(15):8055–8069

    Article  CAS  Google Scholar 

  • Herrera ML, Vallor AC, Gelfond JA et al (2009) Strain-dependent variation in 18S ribosomal DNA Copy numbers in Aspergillus fumigatus. J Clin Microbiol 47(5):1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heseltine E, Rosen J (2009) WHO guidelines for indoor air quality: dampness and mould. WHO Regional Office Europe.

    Google Scholar 

  • Hill SC, Pan Y, Williamson C et al (2013) Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria. Opt Express 21(19):22285–22313

    Article  PubMed  CAS  Google Scholar 

  • Ho H, Rao CY, Hsu H et al (2005) Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos Environ 39(32):5839–5850

    Article  CAS  Google Scholar 

  • Huber JA, Morrison HG, Huse SM et al (2009) Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environ Microbiol 11(5):1292–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iossifova Y, Reponen T, Daines M et al (2008) Comparison of two analytical methods for detecting (1-3)-β-D-glucan in pure fungal cultures and in home dust samples. Open Allergy J 1:26–34

    Article  CAS  Google Scholar 

  • Iossifova YY, Reponen T, Ryan PH et al (2009) Mold exposure during infancy as a predictor of potential asthma development. Ann Allergy Asthma Immunol 102(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Iossifova Y, Reponen T, Bernstein D et al (2007) House dust (1–3)-β-d-glucan and wheezing in infants. Allergy 62(5):504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaarakainen P, Rintala H, Vepsäläinen A et al (2009) Microbial content of house dust samples determined with qPCR. Sci Total Environ 407(16):4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Kanaani H, Hargreaves M, Ristovski Z et al (2007) Performance assessment of UVAPS: Influence of fungal spore age and air exposure. J Aerosol Sci 38(1):83–96

    Article  CAS  Google Scholar 

  • Kanaani H, Hargreaves M, Smith J et al (2008) Performance of UVAPS with respect to detection of airborne fungi. J Aerosol Sci 39(2):175–189

    Article  CAS  Google Scholar 

  • Kanchongkittiphon W, Mendell MJ, Gaffin JM et al (2015) Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect 123(1):6–20

    Article  CAS  PubMed  Google Scholar 

  • Karlsson K, Malmberg P (1989) Characterization of exposure to molds and actinomycetes in agricultural dusts by scanning electron microscopy, fluorescence microscopy and the culture method. Scand J Work Environ Health 353–359

    Google Scholar 

  • Krause JD, Hammad YY, Ball LB (2003) Application of a fluorometric method for the detection of mold in indoor environments. Appl Occup Environ Hyg 18(7):499–503

    Article  PubMed  Google Scholar 

  • Lee T, Grinshpun SA, Martuzevicius D et al (2006) Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmos Environ 40(16):2902–2910

    Article  CAS  PubMed Central  Google Scholar 

  • Liu CM, Kachur S, Dwan MG et al (2012) FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol 12:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Low SY, Hill JE, Peccia J (2009) DNA aptamers bind specifically and selectively to (1 → 3)-β-d-glucans. Biochem Biophys Res Commun 378(4):701–705

    Article  CAS  PubMed  Google Scholar 

  • Lymperopoulou DS, Adams RI, Lindow SE (2016) Contribution of vegetation to the microbial composition of nearby outdoor air. Appl Environ Microbiol 82(13):3822–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen A (2003) NAGase activity in airborne biomass dust and relationship between NAGase concentrations and fungal spores. Aerobiologia 19(2):97–105

    Article  Google Scholar 

  • Madsen AM, Schlunssen V, Olsen T et al (2009) Airborne fungal and bacterial components in PM1 dust from biofuel plants. Ann Occup Hyg 53(7):749–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthias-Maser S, Jaenicke R (1991) A method to identify biological aerosol particles with radius> 0.3 μm for the determination of their size distribution. J Aerosol Sci 22:S849–S852

    Article  CAS  Google Scholar 

  • Matthias-Maser S, Jaenicke R (1994) Examination of atmospheric bioaerosol particles with radii> 0.2 μm. J Aerosol Sci 25(8):1605–1613

    Article  CAS  Google Scholar 

  • Méjean G, Kasparian J, Yu J et al (2004) Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system. Appl Phys B 78(5):535–537

    Article  CAS  Google Scholar 

  • Meklin T, Haugland RA, Reponen T et al (2004) Quantitative PCR analysis of house dust can reveal abnormal mold conditions. J Environ Monitor 6(7):615–620

    Article  CAS  Google Scholar 

  • Meklin T, Reponen T, McKinstry C et al (2007) Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously. Sci Total Environ 382(1):130–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell MJ, Mirer AG, Cheung K et al (2011) Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect 119(6):748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mensah-Attipoe J, Reponen T, Salmela A et al (2015) Susceptibility of green and conventional building materials to microbial growth. Indoor Air 25(3):273–284

    Article  CAS  PubMed  Google Scholar 

  • Mensah-Attipoe J, Reponen T, Veijalainen A et al (2016a) Comparison of methods for assessing temporal variation of growth of fungi on building materials. Microbiol 162(11):1895–1903

    Article  CAS  Google Scholar 

  • Mensah-Attipoe J, Saari S, Veijalainen A et al (2016b) Release and characteristics of fungal fragments in various conditions. Sci Total Environ 547:234–243

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nature Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Mille-Lindblom C, von Wachenfeldt E, Tranvik LJ (2004) Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. J Microbiol Methods 59(2):253–262

    Article  CAS  PubMed  Google Scholar 

  • Miller J, Laflamme A, Sobol Y et al (1988) Fungi and fungal products in some Canadian houses. Internat Biodeterior 24(2):103–120

    Article  CAS  Google Scholar 

  • Moularat S, Robine E, Ramalho O et al (2008) Detection of fungal development in closed spaces through the determination of specific chemical targets. Chemosphere 72(2):224–232

    Article  CAS  PubMed  Google Scholar 

  • Noterman S, Soentoro PS (1986) Immunological relationship of extra-cellular polysaccharide antigens produced by different mould species. Antonie Van Leeuwnhoek 52:393–401

    Article  Google Scholar 

  • O’Connor DJ, Iacopino D, Healy DA et al (2011) The intrinsic fluorescence spectra of selected pollen and fungal spores. Atmos Environ 45(35):6451–6458

    Article  CAS  Google Scholar 

  • Palmgren U (1986) Collection of airborne micro-organisms on Nuclepore filters, estimation and analysis – CAMNEA method. J Appl Bacteriol Oxford 61(5):401–406

    Article  CAS  Google Scholar 

  • Park J, Cox-Ganser JM (2011) Mold exposure and respiratory health in damp indoor environments. Front Biosci E 3:575–571

    Google Scholar 

  • Pietarinen V, Rintala H, Hyvärinen A et al (2008) Quantitative PCR analysis of fungi and bacteria in building materials and comparison to culture-based analysis. J Environ Monitor 10(5):655–663

    Article  CAS  Google Scholar 

  • Piñar G, Sterflinger K (2009) Microbes and building materials. Building materials: properties, performance and applications. Nova Publishers, New York, p 163–188

    Google Scholar 

  • Pitkäranta M, Meklin T, Hyvärinen A et al (2011) Molecular profiling of fungal communities in moisture damaged buildings before and after remediation – a comparison of culture-dependent and culture-independent methods. BMC Microbiol 11(1):1

    Article  CAS  Google Scholar 

  • Pitkaranta M, Meklin T, Hyvarinen A et al (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol 74(1):233–244

    Article  CAS  PubMed  Google Scholar 

  • Pöhlker C, Huffman J, Pöschl U (2012) Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences. Atmos Meas Tech 5(1):37–71

    Article  CAS  Google Scholar 

  • Raimondi V, Agati G, Cecchi G et al (2009) In vivo real-time recording of UV-induced changes in the autofluorescence of a melanin-containing fungus using a micro-spectrofluorimeter and a low-cost webcam. Opt Express 17(25):22735–22746

    Article  CAS  PubMed  Google Scholar 

  • Rast DM, Baumgartner D, Mayer C et al (2003) Cell wall-associated enzymes in fungi. Phytochemistry 64(2):339–366

    Article  CAS  PubMed  Google Scholar 

  • Rastogi R, Wu M, Dasgupta I et al (2009) Visualization of ribosomal RNA operon copy number distribution. BMC Microbiol 9:208. doi:10.1186/1471-2180-9-208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reeslev M, Miller M, Nielsen KF (2003) Quantifying mold biomass on gypsum board: Comparison of ergosterol and beta-N-acetylhexosaminidase as mold biomass parameters. Appl Environ Microbiol 69(7):3996–3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reponen T, Seo S, Grimsley F et al (2007) Fungal fragments in moldy houses: a field study in homes in New Orleans and Southern Ohio. Atmos Environ 41(37):8140–8149

    Article  CAS  PubMed Central  Google Scholar 

  • Reponen T, Willeke K, Grinshpun S et al (2011) Biological particle sampling. In: Aerosol measurement: principles, techniques, and applications, 3rd Edn. 549–570

    Google Scholar 

  • Rylander R (2015) β-N-Acetylhexosaminidase (NAHA) as a marker of fungal cell biomass – storage stability and relation to β-glucan. Int J Monitor Anal 3(4):205–209

    Article  CAS  Google Scholar 

  • Rylander R, Reeslev M, Hulander T (2010) Airborne enzyme measurements to detect indoor mould exposure. J Environ Monitor 12(11):2161

    Article  CAS  Google Scholar 

  • Saari S, Reponen T, Keskinen J (2014) Performance of two fluorescence-based real-time bioaerosol detectors: BioScout vs. UVAPS. Aero Sci Technol 48(4):371–378

    Article  CAS  Google Scholar 

  • Saari S, Putkiranta M, Keskinen J (2013) Fluorescence spectroscopy of atmospherically relevant bacterial and fungal spores and potential interferences. Atmos Environ 71:202–209

    Article  CAS  Google Scholar 

  • Saraf A, Larsson L, Burge H et al (1997) Quantification of ergosterol and 3-hydroxy fatty acids in settled house dust by gas chromatography-mass spectrometry: comparison with fungal culture and determination of endotoxin by a Limulus amebocyte lysate assay. Appl Environ Microbiol 63(7):2554–2559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28(2):239–242

    Article  Google Scholar 

  • Schaub B, Lauener R, von Mutius E (2006) The many faces of the hygiene hypothesis. J Allergy Clin Immunol 117(5):969–977

    Article  PubMed  Google Scholar 

  • Sivaprakasam V, Huston A, Scotto C et al (2004) Multiple UV wavelength excitation and fluorescence of bioaerosols. Opt Express 12(19):4457–4466

    Article  CAS  PubMed  Google Scholar 

  • Sonesson A, Larsson L, Fox A et al (1988) Determination of environmental levels of peptidoglycan and lipopolysaccharide using gas chromatography with negative-ion chemical-ionization mass spectrometry utilizing bacterial amino acids and hydroxy fatty acids as biomarkers. J Chromatog B: Biomed Sci Appl 431:1–15

    Article  CAS  Google Scholar 

  • Szponar B, Szponar A, Larsson L (2003) Direct assessment of microbial colonisation in damp houses by chemical marker analysis. Indoor Built Environ 12(4):251–254

    Article  CAS  Google Scholar 

  • Thorne PS, Lange JL, Bloebaum P et al (1994) Bioaerosol sampling in field studies: can samples be express mailed? Am Ind Hyg Assoc 55(11):1072–1079

    Article  CAS  Google Scholar 

  • Tischer C, Chen CM, Heinrich J (2011) Association between domestic mould and mould components, and asthma and allergy in children: a systematic review. Eur Respir J 38(4):812–824

    Article  CAS  PubMed  Google Scholar 

  • Toivola M, Alm S, Reponen T et al (2002) Personal exposures and microenvironmental concentrations of particles and bioaerosols. J Environ Monitor 4(1):166–174

    Article  CAS  Google Scholar 

  • Tringe SG, Zhang T, Liu X et al (2008) The airborne metagenome in an indoor urban environment. PLoS One 3(4):e1862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vesper S, Wymer L, Meklin T et al (2005) Comparison of populations of mould species in homes in the UK and USA using mould-specific quantitative PCR. Lett Appl Microbiol 41(4):367–373

    Article  CAS  PubMed  Google Scholar 

  • Vesper S (2007) Development of an Environmental Relative Moldiness Index for US Homes. J Occup Environ Med 49(8):829

    Article  PubMed  Google Scholar 

  • Viegas C, Viegas S, Monteiro A et al (2012) Comparison of indoor and outdoor fungi and particles in poultry units. WIT Transactions on Ecology and the Environment 162

    Google Scholar 

  • Volckens J, Peters TM (2005) Counting and particle transmission efficiency of the aerodynamic particle sizer. J Aerosol Sci 36(12):1400–1408

    Article  CAS  Google Scholar 

  • von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229

    Article  Google Scholar 

  • Wittmaack K, Wehnes H, Heinzmann U et al (2005) An overview on bioaerosols viewed by scanning electron microscopy. Sci Total Environ 346(1):244–255

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Su HJ, Ho H (2000) A comparison of sampling media for environmental viable fungi collected in a hospital environment. Environ Res 82(3):253–257

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Dannemiller KC, Bibby K et al (2014) Identification accuracy and diversity reproducibility associated with internal transcribed spacer-based fungal taxonomic library preparation. Environ Microbiol 16(9):2764–2776

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Kimura M, Matsuki H et al (2010) Optimization of a real-time PCR assay to quantitate airborne fungi collected on a gelatin filter. J Biosci Bioeng 109(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Young S, Castranova V (2005) Toxicology of 1-3-beta-glucans: glucans as a marker for fungal exposure. CRC Press

    Google Scholar 

  • Zeng Q, Westermark S, Rasmuson-Lestander Ã… et al (2006) Detection and quantification of Cladosporium in aerosols by real-time PCR. J Environ Monitor 8(1):153–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Mensah-Attipoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mensah-Attipoe, J., Täubel, M. (2017). Analysis Approaches for Fungi in Indoor Environmental Assessments. In: Viegas, C., Viegas, S., Gomes, A., Täubel, M., Sabino, R. (eds) Exposure to Microbiological Agents in Indoor and Occupational Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-61688-9_6

Download citation

Publish with us

Policies and ethics