Skip to main content

Bioburden Exposure in Highly Contaminated Occupational Environments

  • Chapter
  • First Online:
Exposure to Microbiological Agents in Indoor and Occupational Environments

Abstract

The presence of high levels of bioaerosols is frequently the result of the natural colonization of an organic substrate present in the workplace. Therefore bioaerossol composition depends of the type of setting and materials that are handled/used. Each of the components have normally health-based recommended exposure limit but workers are normally exposed to the mixture present in the bioaerosols and this can implicate different and more severe health effects than being exposed to a singular component. The purpose of this chapter is to review the microbiota and metabolites concentrations found in occupational environments with high probability to contain high microbiota load. Additionally, It also addresses the most frequently encountered fungal and bacteria species, the sampling strategy selected and the measured metabolites and tasks involving high exposure. The review focuses on 43 articles that were considered relevant to this topic (scientific studies published between 1991 and 2017). It was possible to obtain relevant data regarding the settings and tasks that involve higher exposure to bioaerosols and highlighting also the future challenges to ensure a suitable exposure assessment of the microbiota burden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup F, Oliver Duran C, Burch D (2008) Antimicrobial resistance in swine production. Anim Health Res Rev 9(2):135–148. doi:10.1017/S1466252308001503

    Article  PubMed  Google Scholar 

  • Adams RI, Tian Y, Taylor JW et al. (2015) Passive dust collectors for assessing airborne microbial material. Microbiome 3:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Basinas J, Cronin G, Hogan V et al. (2017) Exposure to inhalable dust, endotoxin, and total volatile organic carbons on dairy farms using manual and automated feeding system. Ann Work Expo Health 61(3):344–355

    Article  PubMed  Google Scholar 

  • Bello A, Quinn MM, Perry MJ et al. (2010) Quanti-tative assessment of airborne exposures generated during common cleaning tasks: a pilot study. Environ Health 9:76, http://www.ehjournal.net/content/9/1/76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomquist G, Palmgren U, Ström G (1984) Improved techniques for sampling airborne fungal particles in highly contaminated environments. Scand J Work Environ Health 10(4):253–258

    Article  CAS  PubMed  Google Scholar 

  • Brenier-Pinchart MP, Lebeau BB, Quesada JL et al. (2009) Influence of internal and outdoor factors on filamentous fungal flora in hematology wards. Am J Infect Control 37:631–637

    Article  PubMed  Google Scholar 

  • Breum NO, Nielsen BH, Nielsen EM et al. (1996) Bio-aerosol exposure during collection of mixed domestic waste – an intervention study on compactor truck design. Waste Manag Res 14:527–536

    Article  CAS  Google Scholar 

  • Burdorf A (2005) Identification of determinants of exposure: consequences for measurement and control strategies. Occup Environ Med 62:344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Nuntiis P, Maggi O, Mandrioli P et al. (2003) Cultural heritage and aerobiology – methods and measurement techniques for biodeterioration monitoring. Kluwer Academic Publishers, Dordrecht, p 107–144

    Book  Google Scholar 

  • Duquenne P, Marchand G, Duchain C (2012) Measurement of endotoxins in bioaerosols at workplace: a critical review of literature and a standardization issue. Ann Occup Hyg 57(2):137–172. doi:10.1093/annhyg/mes051

    PubMed  Google Scholar 

  • Eduard W, Halstensen A (2009) Quantitative exposure assessment of organic dust. Scand J Work Environ Health Suppl 7:30–35

    Google Scholar 

  • Gutarowska B, Skóra J, Stępień Ł et al. (2015) Assessment of microbial contamination within working environments of different types of composting plants. J Air Waste Manag Assoc 65(4):466–478

    Article  CAS  PubMed  Google Scholar 

  • Halstensen AS, Heldal KK, Wouters IM et al. (2013) Exposure to grain dust and microbial components in the Norwegian Grain and Compound Feed Industry. Ann Occup Hyg 57(9):1105–1114

    CAS  PubMed  Google Scholar 

  • Halstensen AS, Nordby KC, Wouters IM et al. (2007) Determinants of microbial exposure in grain farming. Ann Occup Hyg 51(7):581–592

    Article  CAS  PubMed  Google Scholar 

  • Halstensen AS, Nordby KCH, Elen O et al. (2004) Ochratoxin A in grain dust – estimated exposure and relations to agricultural practices in grain production. Ann Agric Environ Med 11:245–254

    CAS  PubMed  Google Scholar 

  • Hameed AAA, Ayesh AM, Mohamed MAR et al. (2012) Fungi and some mycotoxins producing species in the air of soybean and cotton mills: a case study. Atmos Pollut Res 3:126–131

    Article  Google Scholar 

  • Health Canada – Indoor air quality in office buildings: a technical guide (1993) Vancouver: Health Canada. http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/air/office_buildingimmeubles_bureaux/93ehd-dhm166-eng.pdf

  • Health Council of the Netherlands (2010) Endotoxins – Health-based recommended occupational exposure limit. Health Council of the Netherlands, The Hague, https://www.gezondheidsraad.nl/en/task-and-procedure/areas-of-activity/healthy-working-conditions/endotoxins-health-based-recommended

    Google Scholar 

  • Health Safety Executive (2010) Current control standards for tasks with high exposure to grain dust. Prepared by the Institute of Occupational Medicine. Research Report RR829

    Google Scholar 

  • IARC (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr Eval Carcinog Risks Hum 82:1–556. PMID:12687954

    Google Scholar 

  • Jorna THJM, Borm PJA, Valks J et al. (1994) Respiratory symptoms and lung function in emiel animal feed workers. Chest 106(4):1050–1055

    Article  CAS  PubMed  Google Scholar 

  • Jürgensen CW, Madsen AM (2016) Influence of everyday activities and presence of people in common indoor environments on exposure to airborne fungi. AIMS Environ Sci 3(1):77–95

    Article  Google Scholar 

  • Khoury A, Atoui A (2010) Ochratoxin A: general overview and actual molecular status. Toxins 2(4):461–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KY, Ko HJ, Kim HT et al. (2007) Influence of extreme seasons on airborne pollutant levels in a pig-confinement building. Arch Environ Occup Health 62(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Krysińska-Traczyk E, Pande BN, Skórska C et al. (2005) Exposure of Indian agricultural workers to airborne microorganisms, dust and endotoxin during handling of various plant products. Ann Agric Environ Med 12:269–275

    PubMed  Google Scholar 

  • Lanier C, André V, Séguin V et al. (2012) Recurrence of Stachybotrys chartarum during mycological and toxicological study of bioaerosols collected in a dairy cattle shed. Ann Agric Environ Med 19:61–67

    PubMed  Google Scholar 

  • Lawniczek-Walczyk A, Gorny RL, Golofit-Szymczak M et al. (2013) Occupational exposure to airborne microorganisms, endotoxins and β-glucans in poultry houses at different stages of the production cycle. Ann Agric Environ Med 20(2):259–268

    CAS  PubMed  Google Scholar 

  • Liao VH, Chou WC, Chio CP et al. (2009) A probabilistic approach to quantitatively assess the inhalation risk for airborne endotoxin in cotton textile workers. J Hazard Mater 177:103–108

    Article  PubMed  Google Scholar 

  • Madsen AM (2011) Identification of Work Tasks Causing High Occupational Exposure to Bioaerosols at Biofuel Plants Converting Straw or Wood Chips, Environmental Impact of Biofuels. In: Dr. Dos Santos Bernardes MA (ed), InTech, DOI: 10.5772/17859. Available from: https://www.intechopen.com/books/environmental-impact-of-biofuels/identification-of-work-tasks-causing-high-occupational-exposure-to-bioaerosols-at-biofuel-plants-con

  • Madsen AM, Matthiesen CB, Frederiksen MW et al. (2012) Sampling, extraction and measurement of bacteria, endotoxin, fungi and inflammatory potential of settling indoor dust. J Environ Monit 14:323

    Article  Google Scholar 

  • Madsen AM, Tendal K, Frederiksen MW (2014) Attempts to reduce exposure to fungi, β-glucan, bacteria, endotoxin and dust in vegetable greenhouses and a packaging unit. Sci Total Environ 468–469:1112–1121

    Article  PubMed  Google Scholar 

  • Mc Donnell PE, Coggins MA, Hogan VJ et al. (2008) Exposure assessment of airborne contaminants in the indoor environment of Irish swine farms. Ann Agric Environ Med 15:323–326

    Google Scholar 

  • Meheust D, Le Cann P, Reboux G et al. (2014) Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces. Crit Rev Microbiol 40(3):248–260

    Article  PubMed  Google Scholar 

  • Normand AC, Vacheyrou M, Sudre B et al. (2009) Assessment of dust sampling methods for the study of cultivable-microorganism exposure in stables. Appl Environ Microbiol 74(24):7617–7623

    Article  Google Scholar 

  • Oppliger A (2014) Advancing the science of bioaerosol exposure assessment. Ann Occup Hyg 58(6):661–663

    Article  PubMed  Google Scholar 

  • Oppliger A, Charrière N, Droz PO et al. (2008) Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Ann Occup Hyg 52(5):405–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peccia J, Hospodsky D, Bibby K (2011) New directions: a revolution in DNA sequencing now allows for the meaningful integration of biology with aerosol science. Atmos Environ 45:1896–1897

    Article  CAS  Google Scholar 

  • Rimac D, Macan J, Varnai VM et al. (2010) Exposure to poultry dust and health effects in poultry workers: impact of mould and mite allergens. Int Arch Occup Environ Health 83(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Rylander R (1999) Indoor air-related effects and airborne (1→3)-β-D-glucan. Environ Health Perspect 107:501–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Scaramuzza N, Diaferia C, Berni E (2015) Monitoring the mycobiota of three plants manufacturing Culatello (a typical Italian meat product). Int J Food Microbiol 203:78–85. doi:10.1016/j.ijfoodmicro.2015.02.034

    Article  CAS  PubMed  Google Scholar 

  • Smid T, Heederik D, Mensink G et al. (1992) Exposure to dust, endotoxins, and fungi in the animal feed industry. Am Ind Hyg Assoc J 53(6):362–368

    Article  CAS  PubMed  Google Scholar 

  • Smid T, Schokkin E, Boleij JS (1989) Enumeration of viable fungi in occupational environments: a comparison of samplers and media. Am Ind Hyg Assoc J 50(5):235–239

    Article  CAS  PubMed  Google Scholar 

  • Straumfors A, Heldal KK, Wouters IM et al. (2015) Work tasks as determinants of grain dust and microbial exposure in the Norwegian grain and compound feed industry. Ann Occup Hyg 59(2):142–157. doi:10.1093/annhyg/meu090

    Google Scholar 

  • Sudharsanam S, Srikanth P, Krishnamurthy S et al. (2009) Microorganisms in bioaerosols in indoor air of hospital and non-hospital settings. Sri Ramachandra J Med 2:52

    Google Scholar 

  • Sudharsanam S, Swaminathan S, Ramalingam A et al. (2012) Characterization of indoor bioaerosols from a hospital ward in a tropical setting. Afr Health Sci 12(2):217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swan JR, Crook B (1998) Airborne microorganisms associated with grain handling. Ann Agric Environ Med 5:7–15

    CAS  PubMed  Google Scholar 

  • Thilsing T, Madsen AM, Basinas I, et al. (2015) Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse. Ann Occup Hyg, 59(2):142–157

    Google Scholar 

  • Thorne PS, Heederik D (1999) Assessment methods for bioaerosols. In: Salthammer T (ed.) Organic indoor air pollutants – occurrence, measurement, evaluation. Wiley/VCH, Weinheim, p 85–103

    Chapter  Google Scholar 

  • Thulin H, Björkdahl M, Karlsson AS et al. (2002) Reduction of exposure to laboratory animal allergens in a research laboratory. Ann Occup Hyg 46:61–68

    PubMed  Google Scholar 

  • Vacova M, Buchta V, Prymula R et al. (2006) The occurrence of microscopic fungi in air samples from a transplant intensive care unit. Indoor Built Environ 15:115–118

    Article  Google Scholar 

  • Verhoeff AP, Van Wijnen JH, Brunekreef B (1992) Presence of viable mould propagules in indoor air in relation to house damp and outdoor air. Allergy 47(2):83–91

    Article  CAS  PubMed  Google Scholar 

  • Viegas S (2012) Estudo da exposição profissional a formaldeído laboratórios hospitalares de anatomia patológica. Caminhos do Conhecimento. http://www.edi-colibri.pt/Detalhes.aspx?ItemID=1576

  • Viegas S, Veiga L, Figueiredo P et al. (2013) Occupational exposure to aflatoxin B1: the case of poultry and swine production. World Mycotoxin J 6(3):309–315

    Article  CAS  Google Scholar 

  • Viegas S, Almeida-Silva M, Viegas C (2014a) Occupational exposure to particulate matter in 2 Portuguese waste-sorting units. Int J Occup Med Environ Health 27(5):854–862. doi:10.2478/s13382-014-0310-8

    Article  PubMed  Google Scholar 

  • Viegas C, Dias R, Gomes AQ et al. (2014b) Aspergillus flavus contamination in two portuguese wastewater treatment plants. J Toxicol Environ Health A 77:796–805. doi:10.1080/15287394.2014.909300

    Article  CAS  PubMed  Google Scholar 

  • Viegas S, Veiga L, Figueiredo P et al. (2014c) Assessment of workers’ exposure to aflatoxin B1 in a Portuguese waste industry. Ann Occup Hyg 59(2):173–181 doi:10.1093/annhyg/meu082.

    PubMed  Google Scholar 

  • Viegas S, Veiga L, Almeida A et al. (2015a) Occupational exposure to aflatoxin B1 in a Portuguese poultry slaughterhouse. Ann Occup Hyg 60(2):176–183 doi:10.1093/annhyg/mev077

    Article  PubMed  Google Scholar 

  • Viegas C, Sabino R, Botelho D et al. (2015b) Assessment of exposure to the Penicillium glabrum complex in cork industry using complementing methods. Arch Ind Hyg Toxicol 66(3):203–207. doi:10.1515/aiht-2015-66-2614

    Google Scholar 

  • Viegas C, Pinheiro C, Sabino R, et al. (2015c) Environmental mycology in public health: fungi and mycotoxins risk assessment and management. Academic Press, London

    Google Scholar 

  • Viegas C, Faria T, Meneses M et al. (2016a) Analysis of surfaces for characterization of fungal burden – does it matter? Int J Occup Med Environ Health 29(4):623–632. doi:10.13075/ijomeh.1896.00562

    Article  PubMed  Google Scholar 

  • Viegas C, Faria T, Carolino E et al. (2016b) Occupational exposure to fungi and particles in animal feed industry. Medycyna Pracy 67(2):143–154. doi:10.13075/mp.5893.00289

    Article  PubMed  Google Scholar 

  • Viegas C, Faria T, dos Santos M et al. (2016c) Slaughterhouses fungal burden assessment: a contribution for the pursuit of a better assessment strategy. Int J Environ Res Public Health 13:297. doi:10.3390/ijerph13030297

    Article  PubMed Central  Google Scholar 

  • Viegas S, Almeida-Silva M, Faria T et al. (2016d) Occupational exposure assessment to particles with task-based approach. In: Arezes IV (eds) Occupational safety and hygiene. Taylor and Francis Group, London, p 1–6. ISBN: 978-1- 138-02942-2

    Google Scholar 

  • Viegas C, Faria T, Caetano LA, et al. (2017a) Aspergillus spp. prevalence in different Portuguese occupational environments: what is the real scenario in high load settings? J Occup Environ Hyg 13:0. doi:10.1080/15459624.2017.1334901

  • Viegas S, Aranha Caetano L, Korkalainen L et al. (2017b) Cytotoxic and inflammatory potential of air samples from occupational settings with exposure to organic dust. Toxics 5(8):1–16

    Google Scholar 

  • Vincent JH (2005) Health-related aerosol measurement: a review of existing sampling criteria and proposals for new ones. J Environ Monit 7(11):1037–1053

    Article  CAS  PubMed  Google Scholar 

  • Walser SM, Gerstner DG, Brenner B et al. (2015) Evaluation of exposure–response relationships for health effects of microbial bioaerosols – a systematic review. Int J Hyg Environ Health 218:577–589

    Article  PubMed  Google Scholar 

  • Wan-Kuen J, Jung-Hwan K (2005) Exposure levels of airborne bacteria and fungi in Korean swine and poultry sheds. Arch Environ Occup Health 60(3):140–146

    Article  Google Scholar 

  • Wijnand E, Bakke B (1999) Experiences with task-based exposure assessment in studies of farmers and tunnel workers. Norsk Epidemiologi 9(1):65–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Viegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Viegas, C., Smajdova, L., Faria, T., Gomes, A.Q., Viegas, S. (2017). Bioburden Exposure in Highly Contaminated Occupational Environments. In: Viegas, C., Viegas, S., Gomes, A., Täubel, M., Sabino, R. (eds) Exposure to Microbiological Agents in Indoor and Occupational Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-61688-9_17

Download citation

Publish with us

Policies and ethics